We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Diagnostic SHERLOCK Optimized for Rapid Viral Detection

By LabMedica International staff writers
Posted on 08 May 2018
New technique enables SHERLOCK to detect a virus directly in bodily fluids, eliminating a step that required laboratory equipment and expanding the platform's potential to quickly and cheaply track pathogens such as Zika during an outbreak.

The platform can now be used to detect viruses directly in clinical samples such as blood or saliva, eliminating a processing step that previously required a laboratory environment and professionally trained personnel. More...
The development primes SHERLOCK for use in areas where special training and clinical laboratories can be challenging to access.

Scientists at the Broad Institute of the Massachusetts Institute of Technology (MIT) and Harvard Medical School (Cambridge, MA, USA) has also streamlined SHERLOCK's (Specific High-sensitivity Enzymatic Reporter unLOCKing) capabilities to distinguish related viral species from one another and demonstrated the platform's ability to identify clinically relevant mutations, such as a small mutation in Zika virus that has been associated with microcephaly.

The SHERLOCK diagnostic platform uses a programmed Cas13 enzyme paired with reporter molecules to indicate the presence of a genetic target, such as a virus. Until now, a crucial preliminary step for SHERLOCK involved extracting and isolating nucleic acids from patient samples, which typically requires a laboratory and trained personnel, making it difficult to accomplish in the field.

The team developed a simpler method that allows Cas13 to detect its target directly in bodily fluid samples such as saliva or blood. The process is called HUDSON, or Heating Unextracted Diagnostic Samples to Obliterate Nucleases. It consists of a rapid chemical and heat treatment used on the samples in order to inactivate certain enzymes that would otherwise degrade the genetic targets. The processed clinical samples can then be run through the SHERLOCK procedure, and the final detection results, positive or negative, can be easily viewed on the paper strip. The whole pipeline can be completed in less than two hours.

By pairing HUDSON and SHERLOCK, the team was able to detect Dengue virus directly in patient samples of saliva and blood serum. The platform could also detect Zika virus particles that had been added to healthy blood and urine samples. Additionally, the team designed SHERLOCK reagents that make it even easier and faster to distinguish multiple related viral species (Zika, Dengue, West Nile, and yellow fever) from one another. These improvements are particularly useful when a patient has general symptoms, such as a fever, that could be caused by more than one virus.

Pardis C. Sabeti, DPhil, MD, a professor and senior author of the study said, “Rapid and sensitive tools are critical for diagnosing, surveilling, and characterizing an infection. We've taken the SHERLOCK technology and optimized it in the context of these actual applied biological scenarios.” The study was published on April 27, 2018, in the journal Science.

Related Links:
Broad Institute of the Massachusetts Institute of Technology
Harvard Medical School

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.