We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Handheld Device Developed for DNA Amplification and Detection

By LabMedica International staff writers
Posted on 23 Jan 2018
A method has been developed that combines electrochemical detection with recombinase polymerase amplification (RPA) on a portable device to improve detection of genetic material from multiple tuberculosis strains.

The RPA reaction uses enzymes called recombinases that form complexes with oligonucleotide primers and pair the primers with homologous sequences in DNA. More...
A single-stranded DNA binding protein binds to the displaced DNA strand and stabilizes the resulting loop. The primer then initiates DNA amplification by a polymerase, but only if the target DNA sequence is present.

Scientists from Harvard University (Boston, MA, USA) and Diagnostics for All (Salem, MA, USA) used disposable, paper-based strips that integrate three screen-printed carbon electrodes and accomplish thermoregulation with +/-0.1 ºC temperature accuracy. To detect DNA, the team first prepares the paper test strip that includes the blood sample and primers, in addition to integrated electrodes that contain the reagents for RPA. The test strips allows the team to cut down on reaction volume, reducing reagent cost and blood sample size. After identifying a 213-bp region common to both Mycobacterium tuberculosis and Mycobacterium smegmatis, the team designed appropriate primers for the RPA assay to amplify the specific sequence. Performed at 65 ºC, the assay combined isothermal amplification with electrochemical readout of redox-active hexa-amine ruthenium (III) (Ru(NH3)6]3+) as an electroactive mediator for the electrochemical detection of DNA.

The team also performed the reaction with varying levels of initial concentrations of the M. smegmatis target DNA in order to demonstrate the assay's sensitivity. According to the study, the assay's limit of detection is 0.04 ng/µL, equating to 11 colony forming units (CFU)/mL of M. tuberculosis. Because RPA assays do not need additional sample preparation time, the assay in the study required 20 minutes to identify the biosignal.

The scientists emphasized that the RPA assay could potentially identify the signal faster depending on the type of primer and target sequence. While the team used M. smegmatis as a surrogate strain for M. tuberculosis, the benchtop RPA assay they developed can detect up to 19 Mycobacterium species. In addition, the team also carried out experiments using samples spiked with M. tuberculosis DNA that highlights that the electrochemical method also works with the specific bacterial strain.

Data collected by the device, called uMEDNA, can be transmitted by plugging it into a cell phone's headphone jack. The uMEDNA device also communicates with any bluetooth-enabled device and can link to any computer, tablet, or smartphone. At the moment, scientists have developed software for Apple devices and are currently working on adapting the program for Android devices. Maria-Nefeli Tsaloglou, PhD, the lead author of the study, said, “The uMEDNA device will only cost the end user about USD 30. Introducing the DNA detection paper-based strips will keep the assay price relatively low, as well. Electrochemical analyzers in the lab are bulky, expensive, almost in the range of USD 300,000 to USD 1 million. In this study, we proved that the size and electronics within the analyzer can be cheaper.” The study was published in the February 2018 issue of the journal Analytical Biochemistry.

Related Links:
Harvard University
Diagnostics for All

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.