We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Mycobacterium Mutations Associated with Clarithromycin Resistance

By LabMedica International staff writers
Posted on 09 Jan 2018
Mycobacterium abscessus is a leading cause of respiratory diseases and soft tissue infections and it is naturally resistant to many antibiotics in vitro, which complicates clinical treatment and leads to unsatisfactory results.

Macrolides, such as clarithromycin and azithromycin, were regarded as the foundation for the therapeutic regimen for M. More...
abscessus complex infections. However, clarithromycin resistance is increasing dramatically among M. abscessus complex.

Microbiologists at Tongji University School of Medicine (Shanghai, China) collected specimens from the affiliated Shanghai Pulmonary Hospital and a collection of 139 M. abscessus subsp. abscessus and 36 M. abscessus subsp. massiliense clinical isolates was used to explore the utility of the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique for the rapid identification of 23S rRNA (Adenine(2058)-N(6))-methyltransferase Erm(41) (erm(41) and the 23S ribosomal RNA (rrl) gene mutations.

The team designed four primer sets to scan for mutations in the erm(41) and rrl genes using DGGE. PCR reactions and electrophoresis, as well as band retrieval and gel analysis, were performed according to previously described protocols. A Sensititre RAPMYCO panel was used to test the susceptibility of various antibiotics including clarithromycin against the 175 M. abscessus complex isolates.

The authors found a combination of 16 different DGGE patterns were observed for erm(41) gene, including 16 in M. abscessus subsp. abscessus and one in M. abscessus subsp. massiliense. Six DGGE patterns were obtained for rrl gene. Mutations in the erm(41) and rrl detected by DGGE were 100% identical to mutations detected by DNA sequencing. Among the 139 M. abscessus subsp. abscessus isolates, 36 isolates exhibited clarithromycin resistance on day 5. The other 103 were sensitive to clarithromycin on day 5, and 83 of these exhibited inducible resistance after 14 days incubation. Of the 36 M. abscessus subsp. massiliense isolates, 27 were sensitive and eight were resistant to clarithromycin on both days 5 and 14. Notably, one of the isolates was sensitive to clarithromycin on day 5, but displayed inducible resistance on day 14.

The authors concluded that their results demonstrated that DGGE technology is very sensitive to point mutations, as well as to small insertions and deletions in DNA sequences. The accuracy was essentially 100% among targeted fragments of the erm(41) and rrl genes. The results of whole genome sequencing confirmed DGGE efficacy, all distinct nucleotides polymorphisms were detected. PCR-based DGGE is a practical technique for the rapid detection of mutations in the erm(41) and rrl genes associated with clarithromycin resistance in M. abscessus complex. The study was published in the December 2017 issue of the Journal of Microbiological Methods.

Related Links:
Tongji University School of Medicine



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Blood Glucose Reference Analyzer
Nova Primary
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.