We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Methods Developed to Diagnose TB and HIV

By LabMedica International staff writers
Posted on 15 Nov 2017
The bacteria responsible for tuberculosis (TB) can lurk in a person's lung tissue for decades before producing active, infectious TB disease and it is estimated that a third of the global population may have such dormant infections, with 5% to 10% progressing to active disease. More...
Detecting TB is notoriously challenging.

While tuberculosis can be cured, this requires that patients adhere to a strict drug regimen for months, despite common side effects, and multi-drug resistant TB bacteria are becoming more common. Current diagnostic methods can take a long time and poorly detect TB in certain types of patients, including children and patients with HIV infections, making it difficult to determine who needs to be treated and when they have been cured of disease.

Scientists at Arizona State University (Tempe, AZ, USA) applied nanotechnology-based approaches to detect TB proteins in patient blood samples to improve disease detection. Unlike existing methods that attempt to identify bacteria or bacterial DNA in sputum or tissue samples, their two methods measure TB-derived factors released into the blood only during active TB infections and provide a measure of the number of active TB bacteria in the patient.

The team examined HIV-positive adults enrolled in the Houston Tuberculosis Initiative, a large TB screening and surveillance study which ran from October 1995 to September 2004.The investigators performed their analysis using the PRM Mode on a nano-LC UltiMate 3000 high performance liquid chromatography (HPLC) system coupled with an LTQ Velos Pro mass spectrometry system. By measuring the TB protein 10 kDa culture filtrate antigen (CFP-10) in the blood of HIV-infected subjects, the group detected 85% percent of all TB cases and 67% of culture-negative TB cases, much better than the best available molecular test, which is reported to detect only 9% of culture-negative TB cases in HIV-infected patients.

The authors concluded that their study indicated that serum CFP-10 measurement can greatly improve TB diagnosis rates in HIV/TB-co-infected patients, who are diagnosed with reduced efficiency by current TB diagnostics. Improved TB diagnosis is a major unmet need for HIV-infected patients, as undiagnosed and untreated TB is a major cause of excess morbidity and mortality. The study was published on November 1, 2017, in the journal BMC Medicine.

Related Links:
Arizona State University


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automatic Western Blot Analyzer
Tenfly Phoenix Blot Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.