We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Ultrafast Method Determines Antibiotic Resistance

By LabMedica International staff writers
Posted on 24 Aug 2017
Antibiotic resistance is a growing medical problem that threatens human health globally. More...
One important contributory factor in the development of resistance is the incorrect use of antibiotics for treatment.

Reliable methods to quickly and easily identify bacterial resistance and provide the proper treatment from the start have not been possible because existing antibiotic resistance tests take too long. An antibiotic resistance test has been developed that is fast enough to enable a patient to take the right antibiotic home from the health center straight after the first appointment.

Scientists at Uppsala University (Sweden) developed a point-of-care susceptibility test for urinary tract infection, a disease that 100 million women suffer from annually and that exhibits widespread antibiotic resistance. They captured bacterial cells directly from samples with low bacterial counts (104 colony forming units [cfu]/mL) using a custom-designed microfluidic chip and monitor their individual growth rates using microscopy. By averaging the growth rate response to an antibiotic over many individual cells, they can reduce the detection time to the biological response time of the bacteria.

The microfluidic chip consists of a cover glass and a micro-molded silicon elastomer [polydimethylsiloxane (PDMS)] that are covalently bonded together. For micro-molding, they used the standard soft lithography techniques. Flow direction and rate during the study were maintained by pressure-driven flow. An OB1 Mk III electropneumatic controller regulated the air pressure applied to the closed fluidic reservoirs. The team used an Eclipse Ti-E inverted microscope for automated phase contrast microscopy.

The investigators were able to detect changes in growth rate in response to each of nine antibiotics that are used to treat urinary tract infections in minutes. In a test of 49 clinical uropathogenic Escherichia coli (UPEC) isolates, all were correctly classified as susceptible or resistant to ciprofloxacin in less than 10 minutes. The total time for antibiotic susceptibility testing, from loading of sample to diagnostic readout, was less than 30 minutes, which allows the development of a point-of-care test that can guide correct treatment of urinary tract infection.

Özden Baltekin, a PhD student, who performed most of the laboratory work and is the first author of the study said, “We've developed a new method that allows determination of bacterial resistance patterns in urinary tract infections in 10 to 30 minutes. By comparison, the resistance determination currently in use requires one to two days. The rapid test is based on a new plastic microfluidic chip where the bacteria are trapped and methods for analyzing bacterial growth at single-cell level.” The study was published on August 8, 2017, in the journal Proceedings of the National Academy of Sciences.

Related Links:
Uppsala University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.