We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Simple Test Could Improve TB Diagnosis in Developing Countries

By LabMedica International staff writers
Posted on 29 Aug 2016
Researchers have developed an innovative diagnostic assay for tuberculosis (TB) that may replace the complicated error-prone test often used in resource-limited areas. More...
Field trials of the experimental new test began in June 2016 in South Africa, which has a high incidence of TB.

The researchers, led by Prof. Carolyn R. Bertozzi, PhD, Stanford University (Stanford, CA, USA), presented their work at the American Chemical Society’s (ACS; Washington, DC, USA) 252nd National Meeting & Exposition, held August 21-25 in Philadelphia, PA, USA.

In wealthier countries, a patient suspected of having TB can be examined with a chest X-ray or a patient sputum or saliva sample can be tested by modern techniques such PCR. But in developing nations with limited resources and spotty access to electricity, samples are often checked for TB with the Ziehl-Neelsen (ZN) test, developed in the 1880s. The procedure takes several hours and is even not very sensitive, missing some TB cases and resulting in many false positives.

Years ago the researchers began investigating bacterial cell wall glycolipids involved in causing TB. Each glycolipid consists of the sugar trehalose linked to a lipid. They discovered that if they provided slightly modified forms of trehalose to the bacteria, the microbes would metabolize and integrate them into their glycolipids. Other researchers showed that the bacteria can take up forms of trehalose attached to a fluorescent dye molecule. A cell that picks up these sugars glows green. “We thought we could use this to detect the bacteria in sputum samples,” said Prof. Bertozzi. Unfortunately, the other researchers’ dye also sticks to other components in saliva, making it difficult to distinguish the bacteria.

The team solved this problem by attaching trehalose to a “solvatochromic” dye that doesn’t glow until it’s incorporated into the cell walls. As a result, there is no background glow. In addition, the procedure is relatively simple: the technician takes a sputum sample, squirts a small amount of dye mixture onto it, and after an hour examines it under a microscope. Even better, whereas the ZN test dyes label both live and dead cells, the new test labels only live cells as it depends on the bacterial cells metabolizing & integrating the trehalose. Since the ZN test cannot determine whether the number of live cells is decreasing, it cannot be used to monitor treatment effectiveness. “If the drugs aren’t working, you want to switch the patient to the next treatment as quickly as possible so you don’t contribute to drug resistance,” said Prof. Bertozzi.

Prof. Bertozzi’s team is also studying other fluorescent dyes that may work even better, and using their current trehalose/dye molecule to explore the structure and properties of the TB bacteria’s cell wall.

Related Links:
Stanford University
American Chemical Society

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.