We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Uninfected or Asymptomatic? – Key to Forecasting Infectious Disease Epidemics

By LabMedica International staff writers
Posted on 11 Apr 2016
A new study highlights the need to develop and deploy reliable diagnostic screening tests to detect infected individuals whether or not they are showing symptoms.

Major epidemics such as the recent Ebola outbreak or the emerging Zika epidemic may be difficult to forecast because of inability to determine whether individuals are uninfected or infected but not showing symptoms, according to the new study by researchers from University of Cambridge (Cambridge, UK). More...
A principal challenge in infectious disease epidemiology is accurately forecasting the threats posed by diseases early in emerging outbreaks. Accurate real-time forecasts of whether or not initial reports of cases of disease will be followed by a major epidemic are necessary to determine which control measures should be deployed.

The disease’s incubation period (the delay between infection and the appearance of symptoms, during which infected individuals are classed as presymptomatic), can drive significant uncertainty in forecasting during the earliest stages of an epidemic. The study team used mathematical modeling on Ebolavirus as a case study to evaluate the effect of presymptomatic infection on predictions of major epidemics. The results show for the first time that precise estimates of the current number of infected individuals – and consequently the chance of a major outbreak in the future – cannot be inferred from data based on symptomatic cases alone. This is the case even if factors such as the average infection rate and the death or recovery rates of individuals in the population can be estimated accurately.

“If we are able to use diagnostic tests to determine whether individuals who do not show symptoms are susceptible or are instead infected but not showing symptoms, we’ll be in a better position to estimate the chance of a major outbreak,” says Dr Nik Cunniffe, who led the study, “Since the reliability of diagnostic tests affects the extent to which forecasting is possible, it’s important not just to develop new diagnostic tests, but also to ensure those we have are continually refined and promptly deployed.”

Although the researchers chose Ebola as a representative case study of a disease for which reports of initial cases are not always followed by a large epidemic, they say their results are applicable to other outbreaks, and not just those that affect humans. “These findings—that accurate forecasting relies on informing models with data on presymptomatic infections—hold true for anything from the current Zika outbreak through to animal diseases such as bluetongue and even plant pathogens such as Xylella fastidiosa, that is currently causing such devastation to olive groves in southern Italy,” added first author Robin Thompson.

The researchers acknowledge that their models are based on an idealized setting in which symptomatic cases and deaths were recorded perfectly and in which the values of disease transmission parameters were known exactly. However, that additional uncertainty will only make forecasting even more challenging. Presymptomatic infection alone makes prediction imprecise, reinforcing the need to better estimate levels of hidden infection in populations.

The study, by Thompson RN et al, was published April 5, 2016, in the journal PLOS Computational Biology.

Related Links:

University of Cambridge
Biotechnology and Biological Sciences Research Council (BBSRC)



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.