We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Novel Immunoassay Developed to Diagnose Dengue

By LabMedica International staff writers
Posted on 17 Jan 2016
Until now, it has been difficult to diagnose whether someone is suffering from dengue fever or whether they have contracted another flavivirus, such as yellow fever, West Nile virus, or Tick-borne encephalitis virus (TBEV). More...


Although there are already tests on the market, but none of them can tell the difference between these individual flaviviruses and if a definitive diagnosis is required, a sample of the patient's blood has to be sent to a high-security laboratory for analysis.

Scientists at the Fraunhofer Institute for Cell Therapy and Immunology (Leipzig, Germany) have developed a definitive antibody test for Dengue virus. Conventional antibody tests are performed by the health professional who draws the patient's blood. If infected with the Dengue virus, the blood will contain specific antibodies produced by the body to attack the intruder. The laboratory staffer then applies the blood to a test platform with dengue antigens that systematically bind with these antibodies. If, after a set reaction time, antibodies are found on the platform, the physician will assume that the patient has been infected with the Dengue virus. The catch is that, although the antigens bind with the antibodies according to the lock and key principle, they almost always do so at the same site as all other flaviviruses. This means that, even when the test is positive, no one can say for sure that it is actually a case of dengue.

The scientists hope that their test will hit the market around one year from now. In a further step, they are working on ways to differentiate between the four strains of the dengue pathogen. This could be an important breakthrough: Anyone who has survived a dengue-related illness has then acquired immunity against that specific pathogen, but when it comes to the other three strains, that person is at even greater risk. This is because the antibodies they produced to combat the first bout of dengue fever actually help the new virus to spread and make it much harder for that person to recover.

Dr. Sebastian Ulbert, Head of the Working Group on Vaccine Technologies, said, “We've succeeded in developing the first ever antibody test for dengue infections that is capable of distinguishing between dengue and other flaviviruses. Since our test is also based on detecting antibodies, it's just as cheap and easy to run as its conventional counterparts. Our test system has the potential to differentiate between the four viral strains.” The new method can easily be integrated into existing test setups and at no extra cost to manufacturers.

Related Links:

Fraunhofer Institute for Cell Therapy and Immunology  



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-Time PCR System
Gentier 96T
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.