We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Biosensor-Based Rapid Urine Test Detects Urogenital Schistosomiasis

By LabMedica International staff writers
Posted on 14 Jul 2015
In infrastructure-limited regions, point-of-care (POC) molecular diagnostics hold the potential to transform the management of infectious diseases such as schistosomiasis that carry significant long-term morbidity if left undiagnosed.

Electrochemical biosensors are well suited for molecular diagnostics because of their high sensitivity, low cost, ease of integration into POC devices, and portability of the reader instrumentation and have now been used to detect urogenital schistosomiasis. More...


Scientists at Stanford University School of Medicine (CA, USA) and their colleagues have developed a strategy for a rapid one hour molecular diagnosis of bacterial urinary tract infections using electrochemical biosensors. Urinary cells are lysed and directly applied to an array of sensors functionalized with oligonucleotide probes targeting the 16S ribosomal ribonucleic acid (rRNA) of common uropathogens. Formation of the sequence-specific hybridization complex between the pathogen rRNA and the labeled capture and detector probe pairs is detected by an enzyme tag that mediates an amperometric signal output.

The biosensor is composed of three planar gold electrodes, one each for working, auxiliary, and reference. For the biosensor assay, capture probes are bound to the surface of the working electrode via a thiol linkage. Cells in the sample are lysed and mixed with a buffered solution of detector probe, then applied to the sensor surface. If the target rRNA is present, a hybridization complex of target, capture, and detector probes forms. This complex is detected by binding of horseradish peroxidase (HRP)-conjugated anti-fluorescein binding to a fluorescein tag on the detector probe and addition of tetramethylbenzidine (TMB) substrate. The electron transport mediated by the HRP is measured amperometerically, and the signal is proportional to the quantity of the target.

By inducing bulk fluid motion and local heating, alternating current (AC) electrokinetics improved overall signal-to-noise of the biosensor assay. Further implementation of electrokinetics will facilitate integration into a POC device as it obviates the need for an external incubator for hybridization. For schistosomal detection, the scientists applied square wave AC potential across the working and auxiliary electrodes of the electrochemical sensors using a function generator.

The authors concluded that they have made an important step toward development of a POC device for rapid detection of Schistosoma haematobium eggs in urine. They have implemented strategies that will aid in device integration, such as mechanical lysis and AC electrokinetics. For future development, they will integrate this core assay into a fully automated microfluidics cartridge, further optimize the detection sensitivity, and validate with clinical samples.

Related Links:

Stanford University School of Medicine




Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Spinal Fluid Cell Count Control
Spinalscopics
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.