We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Direct Blood Dry LAMP Diagnoses African Trypanosomiasis

By LabMedica International staff writers
Posted on 08 Apr 2015
Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive tool used for the diagnosis of a variety of infectious diseases, but still requires complicated sample preparation steps and a well-equipped laboratory to produce reliable and reproducible results. More...


Several substantial modifications to the LAMP technique have been made to carry out on-site diagnosis of Human African Trypanosomiasis (HAT) in remote areas where there are normally resource-poor laboratories in most developing countries.

Scientists at the Hokkaido University (Sapporo, Japan) working with colleagues in Zambia, refined an existing LAMP system for HAT diagnosis that is cost effective and stable at high temperature. In their system, lysed blood can be used directly with high detection sensitivity. This dry LAMP system will be widely applicable in the field or for bedside diagnosis even in areas lacking adequate infrastructure.

The first essential improvement was that LAMP reagents were dried and stabilized in a single tube by incorporating trehalose as a cryoprotectant to prolong shelf life at ambient temperature. The second technical improvement was achieved by simplifying the sample preparation step so that DNA or ribonucleic acid (RNA) could be amplified directly from detergent-lysed blood samples. Primer sets were evaluated by real-time LAMP and also melting curve analysis using the Rotor-Gene 3000 thermal cycler (Corbett Research, Sydney, Australia) to monitor the reaction, and optimal amplification time and temperature for primer sets were determined.

The investigators developed a combination of dyes that they have called a “colori-fluorometric indicator (CFI) for the LAMP reaction. They also developed a battery-driven hand-made light emitting diodes (LED) illuminator that emits 500 nm wavelength light, which was suitable for field or bedside use. Using CFI, the LAMP reactions could be detected in two ways: either by detecting amplified DNA products with GelGreen or by a decreased Magnesium (Mg2+) concentration with hydroxyl-naphtol blue (HNB). The resulting fluorescence was visible under a blue-green LED illuminator. The color of HNB changed from violet to blue during the progression of the LAMP reaction as the Mg2+ ion concentration decreased by forming insoluble magnesium pyrophosphate. These color changes were easily visible by the naked eye. The sensitivity, as determined by a ten-fold detection limit was comparable to that of calcein, a commonly used color-development reagent for LAMP.

The authors concluded that they had refined the HAT LAMP detection system, making the feasibility of LAMP for bedside diagnosis and field surveillance. Their LAMP system can be applied to a wide range of other infectious diseases and therefore paves the way for possible utilization of rapid molecular diagnostic tests at point of care stations in resource poor countries. Human African trypanosomiasis (HAT) is an endemic protozoan disease affecting many African countries, predominantly in rural areas where the tsetse fly vector is present. The study was published on March 13, 2015, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

Hokkaido University 
Corbett Research 



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.