We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Recent Indian Swine Flu Isolates Display Mutations for Increased Virulence

By LabMedica International staff writers
Posted on 22 Mar 2015
Newly generated data regarding the H1N1 strain of swine flu that has killed more than 1,200 since December 2014 suggests that the virus has acquired mutations that make it more dangerous than previously circulating strains of H1N1 influenza.

Investigators at the Massachusetts Institute of Technology (Cambridge) compared the genetic sequences of two Indian swine flu strains that recently had been deposited into publicly available influenza databases to the strain of H1N1 that emerged in 2009 and killed more than 18,000 people worldwide between 2009 and 2012.

They found that that the recent Indian strains carried new mutations in the hemagglutinin protein (H1) that were known to be capable of increasing the virulence of the virus. More...
One of the new mutations was in amino acid position D225, which had been linked with increased disease severity. Another mutation, in the T200A position, allowed hemagglutinin to bind more strongly to glycan receptors, making the virus more infectious.

These findings apparently contradict previous reports from Indian health officials that the strain had not diverged from the 2009 H1N1 version.

“We are really caught between a rock and a hard place, with little information and a lot of misinformation,” said senior author Dr. Ram Sasisekharan, professor of biological engineering at the Massachusetts Institute of Technology. “When you do real-time surveillance, get organized, and deposit these sequences, then you can come up with a better strategy to respond to the virus. The point we are trying to make is that there is a real need for aggressive surveillance to ensure that the anxiety and hysteria are brought down and people are able to focus on what they really need to worry about. We need to understand the pathology and the severity, rather than simply relying on anecdotal information. The goal is to get a clearer picture of the strains that are circulating and therefore anticipate the right kind of a vaccine strategy for 2016.”

The report was published in the March 11, 2015, issue of the journal Cell Host & Microbe.

Related Links:

Massachusetts Institute of Technology



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.