We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Detection in Blood Cultures of ESBL-Producing Enterobacteriaceae

By LabMedica International staff writers
Posted on 04 Mar 2015
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) technology has been used directly with blood cultures and was found to help guide clinical management of bacteremia caused by gram-negative bacteria (GNB).

Resistance to broad-spectrum cephalosporins is spreading rapidly among Enterobacteriaceae, mostly related to acquisition of extended-spectrum β-lactamases (ESBLs) and ESBL-producing Enterobacteriaceae (ESBL-E) are usually resistant to most β-lactams except cephamycins and carbapenems.

Microbiologist at the Institut National de la Santé et de la Recherche Médicale (Le Kremlin–Bicêtre, France) and their European colleagues studied a single blood culture positive for GNB from each of 245 hospitalized patients. More...
They performed antibiotic susceptibility testing (AST) by the disk diffusion method using bacterial colonies grown from blood cultures and used the double-disk synergy test (DDST) for the phenotypic detection of ESBL producers.

Positivity of blood cultures was detected by using the BacT/Alert system (bioMérieux; La Balme-les-Grottes, France). After obtaining Gram stain results, they tested the blood cultures positive for GNB directly for ESBL-E by using the ESBL Nordmann/Dortet/Poirel (NDP) test and species identification by using the bioMérieux Vitek MS MALDI-TOF MS technique. They also used molecular biology techniques to identify the ESBL genes using polymerase chain reaction (PCR) to amplify the DNA.

The 245 cases of bacteremia were attributed to Enterobacteriaceae (86.1%), nonfermentative GNB (12.7%), and anaerobic GNB (1.2%). Escherichia coli was the predominant enterobacterial species (55.9%); the next most prevalent were Klebsiella pneumoniae (17.5%) and Enterobacter cloacae (9.5%). Pseudomonas aeruginosa (24/31, 77.4%) was the predominant non-fermentative GNB. Anaerobic GNB belonged to the Bacteroides fragilis group (Bacillus fragilis and B. vulgatus). The team identified bacteria directly from blood culture using the MALDI-TOF technique for 237 (96.7%) isolates and the results corresponded to bacterial identification after culture.

The authors concluded that the ESBL NDP test directly performed on positive blood cultures is a reliable technique to identify ESBL-E within 30 minutes. A strong correlation between intermediate susceptibility or resistance to cefotaxime and positivity of the ESBL NDP test was observed. The inexpensive ESBL NDP test might be implemented worldwide. It may optimize rapid choices of antibiotics for treating bloodstream infections. It may also contribute to avoidance of overuse of carbapenems. Finally, a rapid detection of ESBL-E coupled with bacterial species identification will enhance identification of ESBL in species likely to be the source of nosocomial outbreak and facilitate implementation of a rapid strategy for containment. The study was published in the March 2015 issue of the journal Emerging Infectious Diseases.

Related Links:

Institut National de la Santé et de la Recherche Médicale 
bioMérieux



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.