We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Neglected Malaria Subspecies Characterized by Novel Molecular Assay

By LabMedica International staff writers
Posted on 26 Jan 2015
Plasmodium ovale subspecies are similar based on morphology and geographical distribution, but allelic differences indicate that P. More...
ovale curtisi and P. ovale wallikeri are genetically divergent.

Potential clinical and latency duration differences between P. ovale curtisi and P. ovale wallikeri demonstrate the need for investigation into the contribution of this neglected malaria parasite to the global malaria burden.

Scientists at the Uniformed Services University (Bethesda, MD, USA) working with colleagues in Kenya, collected whole blood samples from clinically healthy asymptomatic adult individuals in Nyanza Province, Kenya. The samples were screened with the Parascreen Pan/Pf malaria Rapid Diagnostic Test (Zephyr Biomedicals, Verna, Goa, India) for the presence/absence of malaria parasites from March through September of 2008. Thin and thick smears were examined subsequently by up to five expert microscopists for malaria species designation and estimation of quantitative Parasitemia.

The 22 samples identified as positive for P. ovale via microscopy, in which all were mixed infections with other malaria species, were targeted for DNA extraction and polymerase chain reaction (PCR) based analysis. The team used multilocus genotyping to discriminate P. ovale curtisi and P. ovale wallikeri and all conventional PCRs were performed on a DNA Engine PTC-200 Thermal Cycler (MJ Research; Waltham, MA, USA). Real-time PCR were conducted on the on the ABI 7500 fast real-time PCR (qPCR) platform (Life Technologies; Carlsbad, CA, USA).

Alignments of tryptophan-rich antigen (tra) gene sequences revealed nine samples (40.9%) positive for P. ovale curtisi type 1, two samples (9.1%) positive for P. ovale curtisi type 2, six samples (27.3%) positive for P. ovale wallikeri type 1, and three samples (13.6%) positive for P. ovale wallikeri type 2. Specificity studies showed the ability of the reticulocyte binding protein 2 (rbp2) qPCR assays to detect low-levels of P. ovale in the presence of additional malaria parasite species, including P. falciparum, P. vivax, and P. malariae. The team identified P. ovale curtisi and P. ovale wallikeri in Western Kenya by DNA sequencing of the tryptophan-rich antigen gene, the small subunit ribosomal RNA gene, and the rbp2 gene.

The authors concluded that their novel P. ovale rbp2 qPCR assay detects P. ovale curtisi and P. ovale wallikeri simultaneously and can be utilized to characterize the prevalence, distribution, and burden of P. ovale in malaria endemic regions. The use of multilocus genotyping also provided the first description of the prevalence of P. ovale curtisi and P. ovale wallikeri in Western Kenya, a region holoendemic for malaria transmission. The study was published on January 15, 2015, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:

Uniformed Services University 
Zephyr Biomedicals
MJ Research



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.