We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App




Real-Time Genome Sequencing Helps Control Hospital Outbreak

By LabMedica International staff writers
Posted on 01 Dec 2014
Whole-genome sequencing (WGS) of bacterial isolates provides a promising contemporary method for investigating the epidemiology of outbreaks, particularly when coupled to clinical locational and temporal data. More...


Acinetobacter baumannii is an important cause of nosocomial or hospital-acquired infection, particularly ventilator-associated pneumonia and bloodstream infections in critically ill patients, and has a tendency to cause hospital outbreaks.

Scientists at the Warwick Medical School (UK) and their colleagues investigated multidrug-resistant Acinetobacter (MDR-Aci) isolates obtained from routine clinical samples through culture on blood agar, followed by single-colony isolation. Bacterial identification and antibiotic susceptibility testing were performed in the hospital microbiology laboratory on the Vitek 2 system (bioMérieux; Basingstoke, UK). Multidrug resistance was defined as resistance to equal to or greater than three classes of antibiotics; quinolones, extended-spectrum cephalosporins, β-lactam/β-lactamase inhibitor combinations, aminoglycosides, and carbapenems.

Genomic DNA was extracted from 114 putative Acinetobacter isolates, applying Qiagen 100/G Genomic-tips (Manchester, UK ) to 5 mL to 10 mL of overnight culture. The genome of an isolate from a patient was sequenced on two different sequencing platforms, the 454 FLX (454 Life Sciences, Branford, CT, USA) and the Illumina MiSeq (San Diego, CA, USA). The scientists were able to identify 74 patients belonging to a prolonged outbreak in the hospital by sampling both patients and the environment. They then determined the detailed genetic makeup of the bacteria carried by each of these patients and used this data, with information about the ward that the patients were housed in, and the date of their first positive tests, to identify nearly 70 possible transmission events. Armed with this detailed information, the investigators were able to pinpoint transmission hot spots within the hospital, which included an operating theatre and a specialized bed for burns patients. Deep cleaning of these transmission sites followed and new decontamination protocols were put in place by the hospital.

The authors concluded that whole genome sequencing is now poised to make an impact on hospital infection prevention and control, delivering cost-effective identification of routes of infection within a clinically relevant timeframe and allowing infection control teams to track, and even prevent, the spread of drug-resistant hospital pathogens. Mark J. Pallen, MD, PhD, the senior author of the study, said, “We have demonstrated how whole genome sequencing can be applied in a clinically helpful timeframe to track and control the spread of drug-resistant hospital pathogens. In this case, it helped understand and control what was probably longest running A. baumannii outbreak ever seen in this country.” The study was published on November 20, 2014, in the journal Genome Medicine.

Related Links:

Warwick Medical School
bioMérieux
454 Life Sciences


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.