We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




PCR-RFLP Distinguishes Between Co-Endemic New World Leishmania Species

By LabMedica International staff writers
Posted on 08 Sep 2014
In a study of clinical samples from patients in southeast Mexico, a PCR-RFLP assay was effective in differentiating between co-endemic species of Leishmania—enabling more fine-tuned diagnoses and more appropriate treatments for patients in a given population with different forms of American (New World) leishmaniasis.

American cutaneous leishmaniasis (CL) includes: localized CL (LCL) caused by L. More...
(L.) mexicana; diffuse CL (DCL) caused by L. (L.) amazonensis, Leishmania (L.) venezuelensis, and Leishmania (L.) pifanoi; and mucosal CL (MCL) caused by members of the L. braziliensis complex. In endemic regions, multiple species of Leishmania may coexist. Identification of the infecting species based on clinical symptoms is difficult, especially since several species can cause both LCL and MCL. Diagnostic confirmation and correct identification are important for appropriate species-specific therapeutics as well as epidemiologic studies.

In an international collaboration led by Amalia Monroy-Ostria, professor at the Escuela Nacional de Ciencias Biológicas of the Instituto Politecnico Nacional (IPN; Mexico City, Mexico), a PCR-RFLP (restriction fragment length polymorphism) assay based on the conserved ITS1 (internal transcribed spacer 1) genes was evaluated for direct diagnosis of leishmaniasis and identification of parasite species that, to small but significant extent, coexist in Leishmania-endemic regions of southeast Mexico. Most clinical samples examined, 109/116 (94%), gave patterns similar to L. mexicana, 2 gave patterns similar to L. braziliensis, and 5 gave patterns that suggest a co-infection of 2 strains: co-infection of L. (L.) mexicana and L. (V.) braziliensis or of L. (L.) mexicana and L. (L.) amazonensis. Of 21 Leishmania isolates, 52% displayed a pattern similar to the L. (L.) mexicana strain, 5% showed a mixed pattern compatible with L. (L.) mexicana and L. (V.) braziliensis, 8 with L. (L.) amazonensis and L. (L.) mexicana, and 1 to L. (V.) braziliensis.

The ITS1 PCR-RFLP assay enables diagnosis of leishmaniasis directly (without need for parasite isolation from clinical samples) and simultaneous determination of most infecting species of New World Leishmania, in relatively short time and low cost. Improvements can be made, for example, by further tailoring to sequences that may be found to more specifically characterize local Leishmania species for a given region (e.g., with respect to gene sequences amplified in the PCR or to restriction enzymes used for the RFLP).

The study, by Monroy-Ostria A. et al., was published in the journal Interdisciplinary Perspectives on Infectious Diseases, July 2014.

Related Links:

Instituto Politecnico Nacional



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.