Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

EIKEN CHEMICAL

EIKEN CHEMICAL CO., LTD. provides clinical diagnostic aids, including biochemical, immunological, serological, dry ch... read more Featured Products: More products

Download Mobile App




Improved LAMP Test Diagnoses Symptomatic Falciparum Malaria

By LabMedica International staff writers
Posted on 09 Apr 2014
The molecular diagnosis of malaria by nucleotide amplification requires sophisticated and expensive instruments, typically found only in well-established laboratories.

Loop-mediated isothermal amplification (LAMP) has provided a new platform for an easily adaptable molecular technique for molecular diagnosis of malaria without the use of expensive instruments. More...


Scientists from the International Center for Diarrheal Disease Research (Dhaka, Bangladesh) working with colleagues in North America collected blood samples included 106 microscopy-positive P. falciparum infections and 105 microscopically negative samples. All the subjects had febrile illness and were suspected of malaria. Routine microscopy was performed by experienced microscopists on thick and thin smear slides.

DNA was extracted and real-time polymerase chain reactions (RT-PCR) were performed using Invitrogen SYBR Green I supermix UDG (Life Technologies Corporation; Grand Island, NY, USA). A new primer set was designed targeting the 18S ribosomal ribonucleic acid (rRNA) gene for the detection of P. falciparum in whole blood samples. The efficacy of LAMP (Eiken Chemical Co. Ltd.; Tokyo, Japan) using the new primer set was assessed in this study in comparison to that of a previously described set of LAMP primers. Microscopy and real-time PCR were used as reference methods for detecting P. falciparum. Pre-addition of hydroxy napthol blue (HNB) in the LAMP reaction caused a distinct color change, thereby improving the visual detection system.

The new LAMP assay was found to be 99.1% sensitive compared to microscopy and 98.1% when compared to real-time PCR and the specificity was 99% and 100% in contrast to microscopy and real-time PCR, respectively. The augmented LAMP method can detect at least 5 parasites/μL of infected blood within 35 minutes, while the other LAMP method tested in this study, could detect a minimum of 100 parasites/μL of human blood after 60 minutes of amplification.

The authors concluded that the new LAMP method is highly sensitive and specific for the diagnosis of symptomatic falciparum malaria. This method can be an alternative molecular diagnostic tool to PCR and might become a standard method for wider use. Furthermore, this method has immense potential to become a tangible tool for point-of-care diagnosis of malaria and treatment monitoring in healthcare and epidemiological studies. The study was published on March 5, 2014, in the journal Acta Tropica.

Related Links:

International Center for Diarrheal Disease Research
Life Technologies Corporation
Eiken Chemical Co. Ltd. 



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.