Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App




Molecular Diagnostic Tool Evaluated for Malaria

By LabMedica International staff writers
Posted on 03 Mar 2014
The diagnostic potential of a recently developed photo-induced electron transfer fluorogenic primer (PET) real-time polymerase chain reaction (PCR) called PET-PCR has been investigated for diagnosing malaria. More...


Accurate diagnosis of malaria infections remains challenging, especially in the identification of submicroscopic infections and molecular diagnostic tools that are inexpensive, sensitive enough to detect low-level infections are needed in laboratory settings of resource-limited countries.

Scientists at the University of Georgia (Athens, GA, USA) working with colleagues in East Africa, obtained 303 blood samples from a survey conducted in the Iringa region of Tanzania. Both thick and thin smears were prepared for each sample and DNA was extracted and isolated as well. All samples were screened using the multiplex PET-PCR assay designed to detect Plasmodium genus and P. falciparum initially in laboratory in Tanzania and then repeated at a reference laboratory, the Centers of Disease Control and Prevention (CDC; Atlanta, GA, USA).

A subset of the samples were tested in a blinded fashion to find the sensitivity and specificity of the PET-PCR compared to the nested 18S ribosomal ribonucleic acid (rRNA) PCR. The Stratagene Mx3000P real-time PCR system (Agilent; Santa Clara, CA, USA) was used to test all samples in both the Ifakara Health Institute (Dar es Salaam; Tanzania) and at the CDC.

Twenty-seven samples out of the 303 tested were found to be positive for both P. falciparum and Plasmodium spp. by PET-PCR when performed in both laboratories. Microscopy detected 11 positive samples (3.63%) among the 303 samples tested, and these microscopy positive samples were confirmed to be positive by PET-PCR. In addition, 16 microscopy-negative samples were found to be positive for both P. falciparum and Plasmodium spp. by PET-PCR. The data showed 100% sensitivity and specificity for the PET-PCR assay and 40% sensitivity and 100% specificity for microscopy.

As the goal moves towards malaria elimination, newer tools that are able to detect all malaria cases, including low-density infections not detectable by microscopy, or rapid diagnostic tests (RDTs), and that are applicable to large-scale screening, are required. The authors concluded that PET-PCR as a new molecular diagnostic tool has similar performance characteristics as commonly used PCR methods, but is less expensive, easier to use, and suitable for large scale-surveillance studies in developing country settings. The study was published on January 27, 2014, in the Malaria Journal.

Related Links:

University of Georgia
Agilent
Ifakara Health Institute




Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.