We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Micro-Sized Cantilevers Detect Viruses in Fluids

By LabMedica International staff writers
Posted on 03 Mar 2009
An efficient system for detecting the viruses in fluids uses micro-sized cantilevers coated with membrane proteins

Micro-cantilevers are .5 mm long and 1 µm thick and bend in response to different forces. More...
By measuring changes in the frequencies at which these tiny planks vibrate, scientists could use them as super-sensitive virus-weighing scales. They used the protein receptor, FhuA of Escherichia coli known to bind to the T5 virus. They coated cantilever surfaces with a molecular layer of FhuA proteins sensitized to recognize molecules from the environment. When the array was submerged in a T5 containing fluid, the virus binding to FhuA was detected by measuring shifts in the vibrational frequency of micro-cantilevers.

Professor Martin Hegner at the school of physics and center for research on adaptive nanostructures and nanodevices (CRANN), Naughton Institute, Trinity College Dublin (Ireland, UK) and colleagues performed the measurements in physiological conditions using nanotechnology devices. Their work demonstrated that nanomechanical sensors based on resonating silicon micro-cantilevers could measure such interactions rapidly in fluids.

Commenting on the significance of the discovery, Professor Hegner said: "These findings could lead to more specific blood tests and also will enable portable diagnostic devices in a hospital environment for a range of testing not just viruses, but also genomic markers and marker proteins."

The findings appeared online in Nature News on January 18, 2009.

Related Links:

Trinity College Dublin



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Parainfluenza Virus Test
PARAINFLUENZA ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.