Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




AI Outperforms Pathologists in Diagnosing Breast Cancer

By LabMedica International staff writers
Posted on 20 Dec 2017
A study comparing the ability of Artificial Intelligence (AI) algorithms with expert pathologists in detecting metastatic breast cancer in whole-slide images found that the machine learning outperformed the pathologists. More...
The results of the study published in the Journal of the American Medical Association suggests that deep learning algorithms have the ability to improve diagnosis and could be used to help clinicians detect cancer in the clinic.

The study pitted 11 pathologists with time constraints and one pathologist without time constraints against seven deep learning algorithms in analyzing a training data set of whole-slide images – 110 with and 160 without verified nodal metastases. Out of the 49 test slides with metastatic disease, the pathologists found 31 on an average, while the pathologist allowed to work without time constraint correctly identified 46 out of 49 slides with cancer and 79 out of 80 slides without cancer.

Among the seven deep learning algorithms, the best algorithm performed significantly better in the whole-slide image classification task as compared to the pathologists working with time constraints. The mean performance of the top five algorithms was comparable with that of the single pathologist working without time constraints. However, at a mean of 0.0125 false-positives per normal whole-slide image, the performance of the best-performing algorithm was comparable with that of the single pathologist working without time constraint.

The research was led by Babak Ehteshami Bejnordi, Radboud University Medical Centre Nijmegen in the Netherlands. The researchers concluded that while the findings suggested the potential utility of deep learning algorithms for pathological diagnosis, it required further assessment in a clinical setting.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.