Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Partnership to Develop Microchip for Diagnosing Metastatic Cells

By Labmedica staff writers
Posted on 20 Dec 2006
The College of Nanoscale Science and Engineering (CNSE) of the University of Albany (Albany, NY, USA) and Albert Einstein College of Medicine of Yeshiva University (Bronx, NY, USA) will collaborate on a U.S.$2 million grant from the U.S. More...
National Cancer Institute (NCI) to develop a next-generation microchip that, when placed in a cancerous mass, gathers information on the presence of metastatic cells that would demand more aggressive cancer therapy.

Scientists at the CNSE, led by Dr. James Castracane, professor and head of the nanobioscience constellation, will join Albert Einstein colleagues to study tumor "microenvironments.” Tumors interact with surrounding tissues, cells, and chemicals in ways that all too often encourage cancer cells to invade other areas of the body in the process known as metastasis.

"The NCI has placed a very high priority on understanding the ‘dialogue' in tumor microenvironments that appears crucial for causing cancers to spread,” said Dr. John Condeelis, co-chair of anatomy and structural biology at Albert Einstein College.

Using a multiphoton confocal microscope, Dr. Condeelis was able to directly observe cellular interactions in the tumor microenvironment of live animal models of breast cancer. By placing an artificial blood vessel near tumors, he collected motile cancer cells to study and to predict--by the presence or absence of certain signaling molecules--whether the tumor cells had the potential to metastasize.

The Einstein and Albany scientists will use nanotechnology, which involves studying and working with material on the molecular level, to design a "microchip” version of the artificial blood vessel that Dr. Condeelis has used successfully in animals.

The microchip will be assembled from nanoscale components so that several different functions can be carried out within a very small package. The goal: to implant these tiny microchips--just two to three cells in diameter and a tenth of a millimeter in length--in human tumors, where they would remain for days or weeks. The chips would report remotely to scanners that would "read” them on the nature of the cells that infiltrate them--in particular, on whether metastatic cells are present that would require aggressive cancer therapy.



Related Links:
University of Albany
Albert Einstein College of Medicine of Yeshiva University

Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.