Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Computational Tool Integrates Transcriptomic Data for Improved Breast Cancer Diagnosis and Treatment

By LabMedica International staff writers
Posted on 22 Jul 2024

Breast cancer is the most commonly diagnosed cancer globally, presenting in various subtypes that require precise identification for effective, personalized treatment. More...

Traditionally, cancer subtyping has been conducted through histological staining (immunohistochemistry), which involves identifying specific markers that categorize tumors into distinct subtypes. Recently, high-throughput transcriptomic profiling has transformed the way breast cancer subtypes are identified by analyzing gene activity in cancer cells through the total messenger RNAs present, which correspond to gene sequences and are used by ribosomes to synthesize proteins.

Transcriptomic profiling utilizes RNA sequencing (RNAseq), a rapidly evolving molecular biology technique that sequences RNA strands efficiently. As RNA sequencing becomes more affordable, it holds the potential for routine clinical integration to aid in diagnosis and treatment decisions. However, its application is currently limited by the requirement for processing large sample batches simultaneously and difficulties in comparing samples across different platforms. Now, scientists have developed a computational tool that collates breast cancer transcriptomic data from various databases, enhancing precision oncology by accurately predicting molecular subtypes and therapeutic responses.

The computational tool named EMBER developed by scientists at EPFL (Lausanne, Switzerland) integrates over 11,000 breast cancer transcriptomes, allowing for the prediction of cancer subtypes on an individual sample basis and capturing essential biological pathways, thereby improving the prediction of therapy responses. EMBER uses a statistical model that merges RNA-seq and microarray data from major datasets like TCGA and METABRIC, focusing on early-stage breast cancer patients. The data is normalized to a common scale, selecting the 1000 most variable genes and using 44 stable genes for normalization to maintain important gene expression features.

EMBER was validated with independent patient cohorts and tested on clinical trial data, such as the POETIC trial, identifying potential therapy resistance mechanisms like increased androgen receptor signaling and decreased TGFβ signaling. It accurately identified the five molecular subtypes of breast cancer and crucial pathways, including estrogen receptor signaling and cell proliferation. A notable finding is that EMBER's estrogen receptor signaling score surpasses the immunohistochemistry-based ER index used in clinics, suggesting EMBER's higher accuracy in predicting responses to endocrine therapy. By offering a consolidated platform for breast cancer transcriptomic data, EMBER facilitates a deeper understanding of molecular subtypes and treatment responses, potentially leading to more tailored treatments and improved outcomes for patients with ER+ breast cancer. EMBER also presents a viable method for integrating RNA sequencing into standard diagnostic procedures, promoting more comprehensive and cost-effective cancer diagnostics. This method not only advances precision oncology but also establishes a solid framework for further research and clinical applications.

Related Links:
EPFL


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.