Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Autoimmunity-Associated T Cell Receptors Recognize HLA-Variant-Bound Peptides

By LabMedica International staff writers
Posted on 13 Dec 2022

The immune response in autoimmune disease recapitulates that of responses directed against infection, except that self-antigens are, or become, the target of the adaptive immune system. More...

These self-antigens may drive a process that is localized within a specific organ, such as the thyroid gland (Grave’s disease, Hashimoto’s thyroiditis) or brain (multiple sclerosis).

Autoimmune disease occurs when an immune response attacks one’s own tissues. Like all adaptive immune responses, it is focused on specific antigens by T-cell receptors and B-cell receptors. In contrast to infection, the antigens that these cells recognize are processed from proteins within the target organ and this drives a chronic inflammatory process that disrupts the normal function of the tissue.

A large international team of immunologists partially led by those at Washington University School of Medicine in St. Louis (St Louis, MO, USA) investigated the theory that some T cells that react to microbes also may react to normal human proteins, causing autoimmune disease. The autoimmune diseases ankylosing spondylitis, which involves arthritis in the spine and pelvis, and acute anterior uveitis, which is characterized by inflammation in the eye, are both strongly associated with an HLA variant called HLA-B*27.

The team devised a method to identify protein fragments that drive a T cell response when combined with HLA-B*27, and mapped the fragments against the human genome and five bacterial genomes to identify proteins from which the fragments may have originated. They isolated orphan T cell receptors (TCRs) expressing a disease-associated public β-chain variable region–complementary-determining region 3β (BV9–CDR3β) motif2,3,4 from blood and synovial fluid T cells from individuals with ankylosing spondylitis (AS) and from the eye in individuals with acute anterior uveitis (AAU).

These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. The investigators used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide–MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9–CDR3β TCRs.

Michael Paley, MD, PhD, an Assistant Professor of Medicine and a co-author of the study, said, “For ankylosing spondylitis, the average time between initial symptoms and actual diagnosis is seven to eight years. Shortening that time with improved diagnostics could make a dramatic impact on patients' lives, because treatment could be initiated earlier. As for therapeutics, if we could target these disease-causing T cells for elimination, we could potentially cure a patient or maybe even prevent the disease in people with the high-risk genetic variant. There's a lot of potential for clinical benefit here.” The study was published on December 7, 2022 in the journal Nature.

Related Links:
Washington University School of Medicine


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.