We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




Novel Blood Tests Predict Progression of Parkinson's Disease

By LabMedica International staff writers
Posted on 25 Feb 2020
It is well established that the cumulative incidence of dementia associated with Parkinson’s disease (PD) is approaching 80% and individuals with PD are five to six times more likely to develop cognitive impairment than age-matched controls.

The causes for dementia in PD (PDD) are heterogeneous, complex and not fully understood. More...
The development of biological markers that could identify those at highest risk of early cognitive decline would enhance our understanding of disease progression and give valuable insights into the underlying pathophysiological mechanisms.

Scientists at Newcastle University (Newcastle Upon Tyne, UK) and their associates examined the association of blood-derived markers of cell senescence and inflammation with motor and cognitive function over time in an incident PD cohort. Participants (154 newly diagnosed PD patients and 99 controls) underwent physical and cognitive assessments over 36 months of follow up.

The team analyzed whether markers of cellular senescence such as telomere length (TL), p16 and p21 expression, as well as inflammatory markers in blood samples taken close to diagnosis can be predictive of cognitive and motor progression of the disease over the next 36 months. Mean leukocyte TL and the expression of senescence markers p21 and p16 were measured at two time points (baseline and 18 months).

Investigators also selected five inflammatory markers from existing baseline data using Meso Scale Discovery (Rockville, MD, USA) electrochemiluminescent immunoassays, including the V-PLEX human pro-inflammatory panel. For the isolation of DNA, blood samples were collected using EDTA vacutainers (BD Diagnostics, Oxford, UK). For the isolation of RNA, blood samples were collected in PAXgene Blood RNA Tubes (PreAnalytiX, Qiagen, Manchester UK). The collection tubes were stored at –80 °C. The quantification of expression levels of p21 and p16 was performed by RT-qPCR analysis on a 7900HT Fast Real Time PCR system (Applied Biosystems, Foster City, CA, USA).

The team reported that their study demonstrated that PD patients had shorter telomeres at baseline and 18 months later compared to age-matched healthy controls. Those PD patients, who had developed dementia after three years, also had significantly shorter telomeres compared to individuals who were dementia-free at this time. Baseline p16 levels were associated with faster rates of motor and cognitive decline over 36 months, while a simple inflammatory summary score at baseline best predicted cognitive score 36 months later in PD patients. A baseline inflammatory score consisting of five different cytokines gave the best prediction for cognitive scores of PD cases three years later, while lower p16 gene expression predicted a more rapid disease progression over the same period in relation to both cognitive and motor scores.

Roger Barker, MBBS, MRCP, PhD, a Professor of Clinical Neuroscience and a co-author of the study, said, “Being able to reliably predict the clinical path a patient with newly diagnosed PD will follow would greatly help in terms of planning their treatment now and in the way we do trials of disease-modifying interventions in the future. This study provides an example of how this could be done using a simple blood sample.” The study was published on January 13, 2020 in the Journal of Parkinson's Disease.

Related Links:
Newcastle University
Meso Scale Discovery
BD Diagnostics
Qiagen
Applied Biosystems



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Pipette Controller
Sapphire MaxiPette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.