We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Immune Cells Linked to Malaria-Induced Anemia Through Autoantibody Production

By LabMedica International staff writers
Posted on 28 Nov 2019
Malaria is still a major global health threat with over 200 million new infections and around 400,000 deaths per year. More...
Anemia is a common complication associated with malaria that contributes significantly to the great morbidity and mortality associated with the disease.

Despite its high clinical relevance, the mechanisms underlying malarial anemia in patients remain largely unknown. The difficulty in studying this syndrome arises at least in part from its multi-factorial etiology, as malaria causes both the clearance (through complement-mediated lysis or phagocytosis) of infected and uninfected erythrocytes and bone marrow dyserythropoiesis.

An international team of scientists led by those at New York University School of Medicine (New York City, NY, USA) recruited 24 patients who were aged between 18 and 65 years, and a diagnosis of Plasmodium falciparum malaria by microscopy. This cohort suffered from mild anemia with average hemoglobin levels of 12.4 g/dL (males) and 10.2 g/dL (females). Plasma and peripheral blood mononuclear cells (PBMC) were isolated from peripheral venous blood by Ficoll purification and stored at −80 °C until temperature-controlled transportation from Germany to the New York University. Peripheral venous blood from healthy malaria-naïve donors was obtained on the day of the study.

The scientists performed flow cytometry on a FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA) and analyzed with FlowJo (Tree Star, Ashland, OR, USA). Intracellular T-bet staining was performed using the True-Nuclear Transcription Factor Buffer Set (Biolegend, San Diego, CA, USA). Enzyme-linked immunosorbent assays were performed to estimate malarial antibodies. Assessment of the erythrocyte lysis capacity of plasma was performed following previously described methods with small modifications. Supernatants were read in a spectrophotometer at 414 nm to assess erythrocyte lysis. ELISPOTs were performed as previously reported.

The team identified the production of an unusual type of immune B-cell: FcRL5+T-bet+ B-cells, that increases anti-phosphatidylserine (PS) antibody production associated with the development of anemia in the patients. These immune cells also developed and produced anti-PS antibodies in blood drawn from uninfected people that was then exposed to broken remnants of malaria-infected red blood cells in the laboratory.

Ana M. Rodriguez, PhD, a Professor of Microbiology and a senior author of the study, said, "There is a great need for novel targeted treatments for malaria-induced anemia, which is common and can be fatal for many malaria patients. The unique phenotype and specificity of these immune B-cells could allow them to be used as a biomarker for anemia or as a target for new therapies.” The study was published on November 12, 2019 in the journal eLife.

Related Links:
New York University School of Medicine
Becton Dickinson
Tree Star
Biolegend



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.