Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




T Follicular Helper Cells Retain Lymphoid Characteristics

By LabMedica International staff writers
Posted on 13 Aug 2019
T follicular helper cells (Tfh) are a subset of CD4+ T cells that provide B cell help within the follicles of secondary lymphoid tissues. More...
Tfh promote B cell class switching and affinity maturation, and without Tfh help, germinal centers (GC) fail to form.

Some Tfh cells in lymph nodes uniquely express the surface receptor protein CXCR5 and the inhibitory molecule PD-1. Blood does contain some Tfh cells with theses markers; however, scientists have long debated whether Tfh cells exit lymph nodes and circulate in the blood with traces of their original markers.

A large team of scientists working with the University of Pennsylvania School of Medicine (Philadelphia, PA, USA) assessed the cell surface markers of Tfhs collected from human thoracic ducts, the main, yet difficult to access, "drainpipe" carrying fluid from the lymph system to the blood stream. To learn how characteristics of Tfh in blood connect to the lymph system, the team compared Tfhs from lymph node GCs to Tfh cells in lymph fluid and to those in the blood. Samples were analyzed on three cytometers: LSRII and FACSSymphony A5 for phenotype as well as a FACSAria II for phenotype and sorting.

The team consistently identified "CXCR5-bright PD-1-bright" Tfh cells in lymph fluid at the duct. These doubly labeled Tfhs shared many epigenetic features and expressed similar proteins with Tfh cells in the GC. This means that the Tfhs sampled in the lymphatic duct are cellular intermediates connecting the biology of Tfhs in lymph tissue to Tfhs in blood, ultimately putting to rest the doubt that Tfhs in the blood reflect what happened in the lymph in the immediate past.

The team sees their newfound ability to match more easily obtained samples in the blood with earlier immune events deep in the node as being clinically useful for a variety of applications. From assessing when patients are ready to receive vaccines after bone marrow transplants to measuring how first-line immune treatments for people with inflammatory bowel disease (IBD) or certain types of cancers affect the broader immune system, use of their new "periscope" approach opens the door for more personalized treatment plans.

E. John Wherry, PhD, a Professor of Immunology and lead author of the study, said, “The cells we're looking for in the bloodstream are 0.1% of all cell types circulating in the blood. But our 'periscope' allows us see what that rare cell type can tell us about immune system events that have happened in a distant part of the body.” The study was published on August 1, 2019, in the Journal of Clinical Investigation.

Related Links:
University of Pennsylvania School of Medicine


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.