We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Mast Cell Activation Test Diagnoses Allergic Diseases

By LabMedica International staff writers
Posted on 16 May 2018
Peanut allergies are among the most common food allergies in children. More...
Currently, doctors diagnose peanut allergy using a skin-prick test or immunoglobulin E (IgE) test, but this may result in over-diagnosis or false-positives and it cannot differentiate between sensitivity and true food allergy.

When skin-prick and IgE test results are unclear, allergists rely on an oral food challenge (OFC), which consists of feeding peanut in incrementally larger doses to a patient in a highly controlled setting in hospital to confirm allergy to the food. While the test is the gold standard for diagnosing food allergies, there is risk of causing severe allergic reactions.

Scientists at the University of Manchester (Manchester, UK) and their colleagues have developed a new laboratory test to diagnose peanut allergy. The team used blood samples from 174 children participating in allergy testing, 73 peanut allergic and 101 peanut-tolerant, the scientists added peanut protein to mast cells to screen for IgE-mediated activation. Levels of total IgE, peanut-specific IgE, and IgE to the recombinant allergen components were measured by using ImmunoCAP. Skin prick tests (SPTs) were undertaken according to national guidelines by using lancets and commercial peanut extract, with 1% histamine as a positive control. Images of mast cell activation were collected on an Olympus BX51 upright microscope.

The scientists found that human blood-derived mast cells (MCs) sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the mast cell activation test (MAT) was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. They identified five clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge.

The authors concluded that the MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions. The study was published on March 5, 2018, in The Journal of Allergy and Clinical Immunology.

Related Links:
University of Manchester


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.