We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Lipid-ELISA Improves Detection of Potential PD Biomarker

By LabMedica International staff writers
Posted on 31 Jul 2017
Researchers have developed a novel diagnostic approach for Parkinson’s Disease (PD), which enabled assaying of total alpha-synuclein in whole blood cells (WBC), cerebrospinal fluid (CSF), and saliva. More...
The new ELISA assay could lead to early diagnosis and improved monitoring of PD progression and patient response to therapy.

Making an accurate diagnosis of PD is particularly difficult in early stages and mild cases. There are currently no standard diagnostic tests other than clinical information provided by the patient and findings of neurological examination. One of the best hopes for improving diagnosis is to develop a reliable test for identifying changes in the severity of the disease, which would also allow drug companies to test potential drugs at higher efficacy.

The new assay was developed by a research team at the Faculty of Medicine of the Hebrew University of Jerusalem (Jerusalem, Israel) under the supervision of Dr. Ronit Sharon. First author and PhD student Suaad Abd-Elhadi was awarded Hebrew U’s Kaye Innovation Award for 2017 in recognition of her especially important role in developing the assay.

The assay detects the protein alpha-synuclein, a potentially important PD biomarker as it is closely associated with tissues where PD can be detected and with the neurological pathways along which the disease progresses, causing its characteristic symptoms. However, ELISA capture of alpha-synuclein using antibodies raises a concern regarding efficacy for the intracellular, unfolded pool of alpha-synuclein. An alternative to antibodies is capture by membrane lipids based on utilizing the biochemical property of alpha-synuclein to specifically bind membrane lipids and to acquire a characteristic structure following binding.

They determined alpha-synuclein levels in human samples using immobilized lipids for alpha-synuclein capture. Lipids used consisted of phosphatidyl inositol (PI), phosphatidyl serine (PS), and phosphatidyl ethanolamine (PE). Addition of mono-sialoganglioside to the immobilized lipids improved the system. Following capture, the lipid-bound alpha-synuclein was detected using an anti- alpha-synuclein antibody.

The development of a simple and highly sensitive diagnostic tool that can detect PD biomarkers could lead to a minimally invasive and cost-effective way to improve the lives of Parkinson’s patients. Toward this end, the researchers have recently demonstrated a proof-of-concept to the high potential of their lipid-ELISA assay in differentiating healthy and Parkinson’s affected subjects. They are now in the process of analyzing a large cohort as part of a clinical study, including patients with moderate and severe PD. The Hebrew University has signed an agreement with Integra Holdings for further development.

The related study, Abd-Elhadi S by et al, was published November 2016 in the journal Analytical and Bioanalytical Chemistry.

Related Links:
Hebrew University of Jerusalem


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Melanoma Panel
UltraSEEK Melanoma Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.