We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Multiplex Immunoassay Diagnoses Toxoplasmosis and Rubella

By LabMedica International staff writers
Posted on 13 Jun 2017
Primary infections of Toxoplasma and rubella in pregnant women may result in vertical transmission of the pathogens, which can cause congenital disease that significantly affects fetal development.

Since clinical manifestations of toxoplasmosis and rubella can be absent or nonspecific, serological screening for both diseases in pregnant women is routinely performed worldwide. More...
Currently, tests such as enzyme immunoassay (EIA), enzyme-linked fluorescent assay (ELFA), chemiluminescent microparticle immunoassay, and electrochemiluminescence immunoassay are widely applied in clinical laboratories to diagnose toxoplasmosis.

Scientists at the Carlos Chagas Institute (Curitiba, Brazil) developed a multiplex assay for simultaneous detection of immunoglobulin G (IgG) antibodies produced during toxoplasmosis and rubella infection. They used a quality control panel of contains 92 anti-Toxoplasma gondii IgG-positive serum samples and 30 negative serum samples. The samples were tested for T. gondii IgG by a Vidas ELFA assay. There is no clinical data associated with these samples. To develop assays for the detection of rubella, 23 serum or plasma samples classified as positive for anti- Rubella virus IgG antibodies and two samples negative for anti-R. virus IgG antibodies were used.

The multiplex assay, based on xMap technology to simultaneously diagnose toxoplasmosis and rubella was designed with the best-performing antigens in singleplex and multiplex assays, which included CTOXH, T. gondii lysate, TOX8131, E-1, and E-2. The multiplex assay showed 100% sensitivity and specificity for anti-T. gondii IgG detection and 95.6% sensitivity and 100% specificity for anti-R. virus IgG detection. Fluorescence and median fluorescence intensity (MFI) were determined using a Luminex 200 reader.

The authors concluded that despite the difficulties related to developing multiplex systems, different types of antigens (extracts and recombinant proteins) can be used to develop high-performance diagnostic tests. The assay developed is suitable to screen for prior T. gondii and R. virus infections, because it is a rapid, high-throughput, low-cost alternative to the current standard diagnostic tools, which require multiple individual tests. The study was published in the June 2017 issue of the journal Memórias do Instituto Oswaldo Cruz.

Related Links:
Carlos Chagas Institute



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.