We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Bioassay Developed to Determine Glucocorticoid Sensitivity

By LabMedica International staff writers
Posted on 25 Jan 2017
Glucocorticoids (GCs) remain the first line treatment for almost all non-infectious inflammatory diseases, ranging from acute asthma to rheumatoid arthritis. More...
However, across all conditions, patients have a variable response to GCs with approximately 30% being non-responders.

There is a pressing clinical need for a predictive biomarker of GC responsiveness and the availability of such a tool would also enable patient stratification for the conduct of smart clinical trials in GC resistance. Lymphocyte GC sensitivity has been shown to be closely associated with clinical GC sensitivity in a number of inflammatory diseases.

Clinical scientists at the University of Bristol took peripheral blood samples from healthy subjects by standard venipuncture into EDTA collection tubes. Peripheral blood monocytes were isolated by density gradient centrifugation using Leucosep tubes and cell viability assessed by Trypan blue exclusion. Cells were counted manually by light microscopy using a hemocytometer.

Dexamethasone inhibition of lymphocyte proliferation assays (DILPA) were performed and plates were harvested onto glass fiber filter paper using a Skatron cell harvester. The scientists then optimized and validated a novel non-radioactive in vitro bioassay based on measuring cellular proliferation by incorporation of bromodeoxyuridine (BrdU), termed the BrdU incorporation in lymphocyte steroid sensitivity assay (BLISS). The novel BLISS assay to determine GC sensitivity had a suitably high area under receiver operating characteristic (AUROC, 0.82) and sensitivity in correctly identifying GC non-responders (83%) in reference to the existing gold standard lymphocyte GC sensitivity assessment method (DILPA). The sensitivity of BLISS in identifying GC non-responders is the most important measure of diagnostic accuracy; it must correctly identify those patients who do not respond to GCs so as to reliably reduce their unnecessary exposure to GCs and guide alternative management.

The authors concluded that they had validated a simple novel bioassay with a standardized laboratory protocol, which accurately measures GC sensitivity. This has broad translational implications and could be applied to many inflammatory diseases to guide clinical management of individual patients, ensuring that GC responsive patients are correctly treated with GCs while reducing unnecessary exposure to GCs and accelerating the appropriate escalation of treatment of GC resistant patients. The study was published on December 15, 2016, in the journal Biomarker Research.


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.