We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Aggressive Breast Cancer Identified with Fluorescent Technique

By LabMedica International staff writers
Posted on 21 Jul 2016
Ductal carcinoma in situ (DCIS) of the breast is the most common type of non-invasive breast cancer and in DCIS, epithelial cells proliferate within ducts, which are surrounded by a double layer of myoepithelial cells and basement membranes.

Although epidemiological studies propose aggressive and non-aggressive forms of ductal DCIS, they cannot be identified with conventional histopathology and because of this, to be safe, most patients undergo aggressive treatment.

Scientists at the University of Michigan Medical School (Ann Arbor, MI, USA) used a new method, called biomarker ratio imaging microscopy (BRIM), to evaluate the co-expression of biomarkers correlating and anti-correlating with breast cancer aggressiveness in a retrospective study of DCIS samples. More...
BRIM combines traditional microscope techniques that pathologists use to examine tissue with mathematical analysis. The technique compares levels of different biomarkers, which can be seen as different fluorescent colors in stained tissue under a microscope.

Fluorescence microscopy was performed using a TE2000-U inverted microscope (Nikon, Melville, NY, USA) and an Andor iXon camera (Andor Technology, Belfast, UK) with 100 W mercury lamp. The investigators looked at biopsy tissue samples from 23 patients with DCIS. They used fluorescent imaging, where the tissue samples are stained, to identify key biomarkers. Each biomarker was stained a different color. They then entered the images of the stained tissue samples into a computer that calculated the levels of different biomarkers in each pixel. In cancer, some biomarkers are present in high levels while others are less prolific. BRIM uses the ratio of these different levels to form an image of improved contrast.

The BRIM method found 22% of the samples had low ratios of cancer versus non-cancer biomarkers, suggesting those lesions were very slow-growing and non-aggressive. They note that an advantage of BRIM is that it uses several biomarkers rather than relying on only one. They decided which biomarkers to use after an extensive literature search. The authors concluded that the ability to stratify DCIS lesions and to identify potentially non-aggressive and aggressive lesions raises important issues in addressing overtreatment in breast cancer. BRIM is particularly attractive because it could be integrated into clinical pathology practices. Moreover, this approach may be useful in the cytologic study of aspirates in breast cancer and in peritoneal fluids in ovarian cancer. The study was published on June 1, 2016, in the journal Scientific Reports.

Related Links:
University of Michigan Medical School
Nikon
Andor Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Blood Ammonia Test Analyzer
DRI-CHEM NX10N
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.