We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Breakthrough Technology Characterizes Immune Response

By LabMedica International staff writers
Posted on 16 Nov 2015
Assays enabling the identification and enumeration of antigen-specific T cells are critical tools in characterizing immune responses and harnessing T cell function for treatment of numerous diseases including cancer.

A novel multiplex assay has been developed that combines conventional immune monitoring techniques and immune receptor repertoire sequencing to enable identification of T cells specific to large numbers of antigens simultaneously. More...


Scientists at Adaptive Biotechnologies (South San Francisco, CA, USA) multiplexed 30 different antigens and identified 427 antigen-specific clonotypes from five individuals with frequencies as low as one per million T cells. The clonotypes identified were validated several ways including repeatability, concordance with published clonotypes, and high correlation with Enzyme-Linked ImmunoSpot (ELISPOT).

Antigen-specific T cells were identified using one of two approaches: either by dextramer binding or by CD137 upregulation following overnight incubation with mixtures of peptides. Dextramer-specific T cells were identified by incubating peripheral blood mononuclear cells (PBMCs) with pools of eight dextramers. The new assay was named MIRA for Multiplexed Identification of T cell Receptor Antigen specificity.

The ELISPOT results for four antigens were independently generated for each donor. ELISPOT measures the total number of antigen-specific T cells secreting a particular cytokine. If all antigen-specific T cells secrete the cytokine measured by ELISPOT then results would be analogous to the sum frequency of antigen-specific clonotypes identified by MIRA. The scientists compared IFN-γ ELISPOT results with the sum frequency of antigen-specific clonotypes from each donor. There was a high correlation between results from both assays and MIRA readily detected antigen-specific clonotypes below 1 in 100,000 PBMCs, below estimates of the limit of detection for ELISPOT of around 4 spots per 100,000 PBMCs.

Harlan Robins, PhD, Chief Scientific Officer and Co-Founder at Adaptive Biotechnologies, said, “With this new multiplex technology we now have the ability to assign antigen-specificity to T cell receptors (TCR) sequences at a massive scale. Combined with our first-in-class technology for pairing TCR alpha and beta chain sequences at high throughput, we now have the tools needed for efficient identification of functional immune receptors, which may lead to tremendous advancements in biomarker discovery and therapeutic development.” The study was published on October 28, 2015, in the journal Public Library of Science ONE.

Related Links:

Adaptive Biotechnologies 



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
hCG Whole Blood Pregnancy Test
VEDALAB hCG-CHECK-1
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.