We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genetic Key to Lupus Shows Potential of Personalized Medicine

By LabMedica International staff writers
Posted on 02 Sep 2014
DNA sequencing of a systemic lupus erythematosus (SLE) patient has identified a specific genetic mutation that is causing the disease, opening the way for personalized treatments.

The development shows that for the first time, it is feasible for scientists to identify the individual causes of SLE in patients by using DNA sequencing, allowing doctors to target specific treatments to individual patients.

A multidisciplinary team of scientists at the Australian National University (Canberra, Australia) performed whole exome sequencing in a four year old female with early-onset SLE and conducted biochemical analysis of the putative defect. More...
Whole exome sequencing offers the possibility of identifying rare alleles responsible for disease in such cases as the genetic contribution to disease is most likely to be greatest in cases with early onset and severe phenotypes.

Whole exome sequencing of the female patient with cerebral lupus, who had suffered a stroke at the age of four, identified a rare, homozygous mutation in the Three Prime Repair Exonuclease 1 (TREX1) enzyme that was predicted to be highly deleterious. The TREX1 R97H mutant protein had a 20-fold reduction in exonuclease activity and was associated with an elevated Interferon alpha (IFN-α) signature in the patient. The discovery and characterization of a pathogenic TREX1 in the proband has therapeutic implications in that the patient is now a candidate for neutralizing anti-IFN-α therapy.

Carola G Vinues, LMS, PhD, a professor of in the department of Pathogens and Immunity and senior author of the study, said, “This is the new age of personalized medicine. This study shows that it is possible to unravel the detailed and individual genetic causes of lupus in individuals. Lupus is a heterogeneous disease and patients can experience a number of different symptoms. We believe that there are different genetic causes of lupus. Understanding these defective genes and pathways in each individual will help tailor treatments.” The patient's treating clinician, Jeffrey Chaitow, MBBCh, FRACP, said his young patient, now 10 years old, still needs regular steroids and immune suppressive drugs each day. The study was published online in August 2014 in the journal Arthritis & Rheumatology.

Related Links:

Australian National University



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.