Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Shrink-Wrap Technology Helps Enhance Detection of Biomarkers

By LabMedica International staff writers
Posted on 02 Apr 2014
A novel technique uses wrinkles in metal-coated shrink-wrap to boost fluorescent signals 1,000-fold. More...
The new technology may pave the way for low-cost, highly sensitive biomarker detection and diagnostic devices, and for enabling clinics in resource-limited regions provide their communities with more sensitive detection of infectious diseases.

A persistent challenge in fluorescence detection is to increase the signal to noise ratio of weakly fluorescent biomarkers or of biomolecules present at low concentration. Also, current methods for detection of infectious disease agents are predominantly cost-prohibitive in most areas of the world. Now a novel nanotechnology method using common shrink-wrap may help solve both problems.

The new technology, described by H. Sharma et al. in the Optical Society’s (Washington DC, USA) journal Optical Materials Express, on March 20, 2014, offers a way to significantly boost the signal of fluorescent markers used in biosensing by depositing a combination of metals onto shrink-wrap. “Using commodity shrink-wrap and bulk manufacturing processes, we can make low-cost nanostructures to enable fluorescence enhancements greater than a 1,000-fold, allowing for significantly lower limits of detection,” said Michelle Khine, biomedical engineering professor at the University of California, Irvine (USA); “If you have a solution with very few molecules that you are trying to detect—as in the case of infectious diseases—this platform will help amplify the signal so that a single molecule can be detected.”

In the method, developed by the UC Irvine team led by Prof. Khine, thin layers of gold and nickel are first deposited onto a prestressed thermoplastic polymer (shrink-wrap film). When heated, the shrink-wrap contracts, causing the stiffer metal layers to buckle and wrinkle into flower-like structures that are significantly smaller than previously achieved. Fluorescent-probe tagged biomarkers are added onto the wrinkled metal layer. Specifically, they observed more than three orders of magnitude enhancement in the fluorescence signal emitted from a single molecule of goat anti-mouse immunoglobulin G (IgG) antibody tagged with fluorescein isothiocyanate, FITC, (FITC-IgG), by two-photon excitation.

The enhanced emission is due to the excitation of localized surface plasmons (coherent oscillations of the free electrons in the metal). When light was shined onto the wrinkled surface, the electromagnetic field was amplified within the nanogaps between the shrink-wrap folds. This produced “hotspot” areas characterized by sudden bursts of intense fluorescence signals from the biomarkers. This is the first demonstration of leveraging the plasmons in such hybrid nanostructures by metal enhanced fluorescence (MEF) in the near-infrared wavelengths. The structures can be tuned to have a diverse range of architectures and nanogap sizes with tunable plasmon resonances, to achieve large fluorescence enhancements in other regions of the excitation wavelength spectrum.

Though the current setup requires expensive equipment, the team believes this approach will pave the way to creating an integrated, low-cost device to magnetically trap and sensitively detect labeled molecules and nanoparticles. However, biological sample testing is itself another technical challenge: “The technique should work with measuring fluorescent markers in biological samples, but we have not yet tested bodily fluids,” said Prof. Khine, who cautions that the technique is far from ready for clinical use. For example, she notes, “We are currently working on trying to detect Rotavirus, but one of the main challenges is that our surface is hydrophobic so diffusion of the biomarker onto our composite structures is limited."

University of California, Irvine
The Optical Society

Related Links:

Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.