We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Cancer Biomarkers Detected Directly In Blood

By LabMedica International staff writers
Posted on 14 Aug 2013
A portable, microfluidics-based device has been developed for point-of-care diagnostic testing to detect cancer at its earliest stages. More...


The device identifies cancer biomarkers, which are biological indicators of the disease that often circulate in the blood prior to the appearance of symptoms.

Scientists at the Shanghai Institute of Microsystem and Information Technology (China) have developed a simple, power-free, whole blood, immunoassay, microfluidic system. The procedure integrates plasma extraction with on-chip nanoenzyme-linked immunosorbent assay (ELISA) for a highly sensitive immunoassay. This device uses a pre-degassed polydimethylsiloxane (PDMS) bulk containing mesh-shaped chambers as a suction pump to drive the fluid motion in the chip's microchannels during plasma separation and immunoassay. The system is powered by the pre-degassed bulk PDMS without using external power sources which would be useful for point-of-care diagnosis.

Carcino-embryonic antigen (CEA) and serum cytokeratin fragment 21-1 (CYFRA21-1) were used as model cancer biomarkers to demonstrate the ability of this system to directly detect these biomarkers in whole blood. To develop a simple and portable method, the investigators integrated the plasma separation and biomarker detection with microfluidic methods that combined ELISA and silver signal amplification. In contrast to most other microfluidic assays, they adopted reduction of silver ions onto gold nanoparticles in the ELISA procedure that allowed the signal to be amplified on a solid substrate under continuous fluid flow. The silver amplification readout was monitored using an optical microscope.

The authors concluded that the advantages of this biosensor over other currently available rapid tests for cancer biomarkers is that it can be operated without special equipment, with minimal training, and the cost of reagents is low. The device has potential for point-of-care applications because it is fast, disposable and easy to use and has a low sample volume and low cost. The device allows users to read results with the naked eye or a digital camera, eliminating the need for any expensive and complicated equipment, which makes it suitable for use in low technology, rural or field conditions.

Gang Li, PhD, a senior author of the study said, “Our device is well suited to helping early diagnosis in resource-limited settings where no mechanical pumps or power sources are readily available because it is portable, affordable, sensitive, and specific, and delivered by technology with a user-friendly analytical platform.” He noted that the specialized pump could be prepared in advance and stored in an airtight package. The study was published on May 23, 2013, in the journal Biomicrofluidics.

Related Links:

Shanghai Institute of Microsystem and Information Technology


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.