We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Antigen Profiling of Colorectal Cancer Uses Fluorescence Multiplexing

By LabMedica International staff writers
Posted on 06 Oct 2010
Surface antigen profiling of colorectal cancer (CRC) tissue has been achieved using antibody microarrays with fluorescence multiplexing. More...


The profiling method disaggregates CRC and normal intestinal mucosal tissues to produce suspensions of viable single cells, which are then captured on customized antibody microarrays recognizing 122 different surface antigens.

A study was carried out at the University of Sydney, (Sydney, NSW, Australia) to investigate the surface antigens of surgical samples from 40 CRC patients. Cell binding patterns are recorded by optical scanning of microarrays provide a surface profile of antigens on the cells. The DotScan Microarrays were custom-made at Medsaic Pty Ltd., (Eveleigh, NSW, Australia). Subpopulations of cells bound on the microarray were profiled by fluorescence multiplexing using monoclonal antibodies tagged with Quantum Dots or other fluorescent dyes.

Statistical analysis revealed significant differences between profiles for CRC samples and mucosal controls. Hierarchical clustering of CRC data identified several disease clusters that showed some correlation with clinicopathological stage as determined by conventional histopathological analysis. Fluorescence multiplexing using Phycoerythrin- or Alexa Fluor 647-conjugated antibodies was more effective than multiplexing with antibodies labeled with Quantum Dots. This relatively simple method yields a large amount of information for each patient sample and, with further application, should provide disease signatures, and enable the identification of patients with good or poor prognosis.

While the small size of CRC samples precluded separation of mixed CRC populations into subsets of interest prior to profiling, fluorescence multiplexing was used to profile T-cells (CD3+) and epithelial cell adhesion molecule (EpCAM)-expressing cells of epithelial origin in CRC and corresponding normal intestinal mucosa. The study was published in April 2010 issue of the Journal of Immunological Methods.

Related Links:
University of Sydney
Medsaic Pty Ltd.




Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.