Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Myelodysplastic Syndrome Diagnosed With Peripheral Blood Samples

By LabMedica International staff writers
Posted on 14 Nov 2022

Myelodysplastic syndromes (MDS) encompass a heterogeneous group of clonal bone marrow neoplasms, with a median age at diagnosis of 70 years. More...

MDS are characterized by recurrent cytogenetic and molecular abnormalities, morphologic dysplasia for one or more hematopoietic cell lineage and ineffective hematopoiesis.

Cytomorphological evaluation of bone marrow is the reference standard for the diagnosis of MDS and may be complemented by information obtained from conventional cytogenetic, flow cytometry and molecular profiling analysis. Peripheral blood neutrophil myeloperoxidase expression quantified by flow cytometric analysis has the potential to rule out MDS without requiring invasive bone marrow aspiration.

A large team of hematopathologists at the Grenoble Alpes University Hospital (Grenoble, France) and their colleagues are evaluating a cross-sectional diagnostic accuracy study of two index tests by comparison with a reference standard in consecutive unselected adult patients conducted at a single university hospital. The team evaluated a hypothesis that a flow cytometry-based method involving a single-use tube containing lyophilized reagents will provide the accuracy needed to reject a diagnosis of MDS by analysis of peripheral blood neutrophil myeloperoxidase expression, in addition to other hypotheses.

The study examined an approach involving a product called Lyotube Stain 468 (BD Biosciences, San Jose, CA, USA), compared with an approach using a laboratory-developed liquid reagent-based test, in evaluating possible MDS. The Lyotube Stain 468 product includes dried reagents associated with five fluorochromes, while the laboratory-developed test uses liquid reagents associated with the same fluorochromes. With both approaches, an anti-myeloperoxidase antibody is applied to samples, and myeloperoxidase expression from peripheral blood neutrophils is measured. The team used a BD Biosciences three-laser, eight-color BD FACSCanto-II flow cytometer. The primary outcome is the reference diagnosis of MDS or CMML established by bone marrow examination by two independent experienced hematopathologists blinded to the index test results.

The investigators identified the strengths of this study to include the use of an adequate reference approach to MDS diagnosis, limited spectrum bias owing to enrollment of unselected consecutive patients, and a prespecified threshold for evaluation of diagnostic accuracy. Limitations of the study that they identified include the single-center nature of the study setting, in addition to conventional cytogenetic and molecular profiling approaches not being available to all patients in the study. The study was published in the November 2022 issue of the journal BMJ Open.

Related Links:
Grenoble Alpes University Hospital
BD Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.