We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Chronic Lymphocytic Leukemia Genomic Study Reveals New Subtypes

By LabMedica International staff writers
Posted on 08 Aug 2022

Chronic lymphocytic leukemia (CLL) is a type of cancer that affects the blood and bone marrow. More...

It affects the white blood cells called lymphocytes. It tends to develop very slowly. It is more common in older people and is rare in people younger than 40.

Many people with CLL are asymptomatic and are diagnosed because they have a routine blood test for something else. In CLL symptoms tend to be mild at first and get worse slowly. Many symptoms are vague Recent advances in cancer characterization have consistently revealed marked heterogeneity, impeding the completion of integrated molecular and clinical maps for each malignancy.

An international team of medical scientists, led by those at the Massachusetts General Cancer Center (Boston, MA, USA), have characterized the somatic mutation, gene expression, and epigenetic changes that occur within and across CLL subtypes, uncovering alterations with potential prognostic impact. CLL is a B cell neoplasm with variable natural history that is conventionally categorized into two subtypes distinguished by extent of somatic mutations in the heavy-chain variable region of immunoglobulin genes (IGHV).

The team assessed mutation, structural variant, gene expression, and regulatory features in pre-treatment, post-treatment, or treatment refractory/relapsed tumor samples from 1,148 individuals with CLL or monoclonal B cell lymphocytosis. Nearly 1,100 of the samples were subjected to exome or whole-genome sequencing, while 712 were assessed with RNA sequencing, and DNA methylation profiling was done on 999 samples.

The investigator’s results highlighted 202 suspected driver genes, impacted by recurrent alterations ranging from single nucleotide changes or small insertions or deletions to structural variants and DNA methylation shifts that appeared to drive CLL, including 109 suspected driver mutations not linked to the blood and bone marrow malignancy in the past. The scientists identified copy number mutations or structural variants that distinguished CLL subtypes with or without mutations in the immunoglobulin gene heavy-chain variable region (IGHV) through an analysis of 512 mutated IGHV (M-CLL) and 459 IGHV-unmutated CLL tumors.

The team noted that specific driver gene changes within IGHV subtypes appeared to correspond to clinical outcomes in CLL, as did drivers found through mutation, structural variant, gene expression, or methylation analyses, though combining the different data streams appeared to offer the most complete view of the disease. The investigators are making the new CLL omics data available to other scientists, along with corresponding clinical data, in an effort to unearth still other insights that may improve the understanding, management, or treatment of CLL.

Catherine Wu, MD, a professor of medicine and co-senior and co-corresponding author, said, “Such a CLL map could eventually be leveraged in the clinic, wherein the genomic features of new patients can be compared with the treatments and outcomes of patients with similar genetic profiles. This profiling could potentially help more accurately tailor prognosis and treatment of a new patient based on their particular molecular features, getting closer to precision medicine.” The study was published on August 4, 2022 in the journal Nature Genetics.

Related Links:
Massachusetts General Cancer Center 


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.