Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




ddPCR Developed for BCR-ABL1 Fusion Transcript in B-Lymphoblastic Leukemia

By LabMedica International staff writers
Posted on 12 Jan 2022
Droplet digital polymerase chain reaction (ddPCR) is a novel polymerase chain reaction (PCR) technique reliant on massive sample partitioning to generate individual reaction chambers (droplets) in which individual amplification targets are detected.

Standardized measurements of BCR-ABL1 p210 translocation by RT-qPCR assays for chronic myelogenous leukemia have proved challenging because of various sources of error including processing of specimens, reference gene selection, the reverse transcriptase reaction, and quantification of transcripts.

Medical Scientists at the University of Minnesota (Minneapolis, MN, USA) obtained clinical samples from specimens from patients who had been previously tested for BCR-ABL1 p190 transcript in the molecular diagnostics laboratory. More...
Samples consisted of both bone marrow and peripheral blood. All samples were stored at −80 °C. The scientists’ aim was to compare results of ddPCR and RT-qPCR BCR-ABL1 fusion transcript measurements of patient samples and determine if either method is superior.

RNA was isolated with the Maxwell RSC simplyRNA Blood Kit and Maxwell RCS instrument (Promega, Madison, WI, USA). The clinical RT-qPCR assay was performed using the TaqMan Reverse Transcription and TaqMan Universal PCR Master Mix (Applied Biosystems, Waltham, MA, USA). Droplet digital PCR was performed using the One-Step RT-ddPCR Advanced Kit for Probes and for automated studies, the QX200 AutoDG system (Bio-Rad Laboratories, Hercules, CA, USA). The PCR was performed in a Bio-Rad C1000 Touch thermal cycler.

The investigators reported that droplet digital polymerase chain reaction was able to detect the BCR-ABL1 p190 transcript to 0.001% (1:10−5) with a calculated limit of detection and limit of quantitation of 4.1 and 5.3 transcripts, respectively. When tested on patient samples, ddPCR was able to identify 20% more positives than a laboratory-developed 2-step RT-qPCR assay. Of the 101 samples measured, 65 samples with a previously positive p190 transcript and sufficient RNA for analysis were further analyzed. Thirty-five of 65 samples (54%) were measured as positive by both methods, and the BCR-ABL1:ABL1 ratio was compared. The majority of samples showed concordant results between the two methods, but several samples demonstrated discordant quantification.

The authors concluded that droplet digital polymerase chain reaction demonstrated increased detection of BCR-ABL1 compared with RT-qPCR. Improved detection of BCR-ABL1 p190 and the potential for improved standardization across multiple laboratories makes ddPCR a suitable method for disease monitoring in patients with acute B-lymphoblastic leukemia. The study was published in the January, 2022 issue of the journal Archives of Pathology and Laboratory Medicine.

Related Links:
University of Minnesota
Promega
Applied Biosystems
Bio-Rad Laboratories



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.