Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




First-Ever Blood-Based Test Detects Range of Cancers and Identifies Whether They Have Spread

By LabMedica International staff writers
Posted on 06 Jan 2022

A new minimally invasive and inexpensive blood test can identify cancer in patients with non-specific symptoms. More...

Scientists at the University of Oxford (Oxford, UK) have developed the new type of blood test that can be used to detect a range of cancers and whether these cancers have spread (metastasized) in the body. The scientists conducted a study in which they analyzed samples from 300 patients with non-specific but concerning symptoms of cancer, such as fatigue and weight loss. The team assessed whether the test could distinguish patients with a range of solid tumors from those without cancer.

Their results showed that cancer was correctly detected in 19 out of every 20 patients with cancer using this test. In those with cancer, metastatic disease was identified with an overall accuracy of 94%. These results make this the first technology to be able to determine the metastatic status of a cancer from a simple blood test, without prior knowledge of the primary cancer type. The test shows promise to help clinicians detect cancer and assess cancer stage in the future.

Unlike many blood-based tests for cancer, which detect genetic material from tumors, this test uses a technique called NMR metabolomics, which uses high magnetic fields and radio waves to profile levels of natural chemicals (metabolites) in the blood. Healthy individuals, people with localized cancer, and people with metastatic cancer each have different profiles of blood metabolites, which can be detected and then analyzed by the researchers’ algorithms to distinguish between these states.

Cancers detected earlier are more likely to be treated successfully. This rapid and inexpensive test could help to overcome many barriers to the early detection of cancer, especially in patients that present with non-specific symptoms, which do not direct investigations towards a specific organ. The new test is not specific to a single cancer type and has shown promise in this traditionally challenging clinical context, including the potential to detect some cancers in the community before conventional imaging is performed. Future studies with larger patient cohorts will further evaluate this technique for the earlier detection of new cancers and potential clinical applications.

“Cancer cells have unique metabolomic fingerprints due to their different metabolic processes. We are only now starting to understand how metabolites produced by tumors can be used as biomarkers to accurately detect cancer,” said Dr. James Larkin, researcher on the study from the University of Oxford. “We have already demonstrated that this technology can successfully identify if patients with multiple sclerosis are progressing to the later stages of disease, even before trained clinicians could tell. It is very exciting that the same technology is now showing promise in other diseases, like cancer.”

“This work describes a new way of identifying cancer. The goal is to produce a test for cancer that any GP can request,” said Dr. Fay Probert, lead researcher of the study from the University of Oxford. “We envisage that metabolomic analysis of the blood will allow accurate, timely and cost-effective triaging of patients with suspected cancer, and could allow better prioritization of patients based on the additional early information this test provides on their disease.”

Related Links:
University of Oxford 


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Nasopharyngeal Applicator
CalgiSwab 5.5" Sterile Mini-tip Calcium Alginate Nasopharyngeal Swab w/Aluminum HDLE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.