We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Dual Immunohistochemistry Bone Marrow Staining Detects Hairy Cell Leukemia

By LabMedica International staff writers
Posted on 03 Mar 2020
Hairy cell leukemia (HCL) is a B-cell lymphoproliferative disorder characterized by distinct immunophenotype (positive for CD19, CD20, PAX5, CD22, CD11c, CD25, CD103, CD123, and CD200). More...
Immunophenotypic analysis by flow cytometry (FC) is considered the gold standard for diagnosis of HCL.

However, both FC and immunohistochemistry (IHC) can be used to determine these markers. Although both trephine bone marrow biopsy and aspirate are vital for assessment of the extent of bone marrow infiltration, in some cases a cellular aspirate cannot be obtained because of extensive fibrosis (i.e. “dry tap”).

Hematologists at the US National Institute of Cancer (Bethesda, MD, USA) and their colleagues analyzed on 148 bone marrow biopsy specimens (123 male and 25 female patients; mean age, 59.8 years; range, 25-81 years) collected from patients evaluated for HCL between 2016 and 2017. Specimens were stained within 24 hours of collection with a panel of antibodies. Specimens were subsequently washed with phosphate-buffered saline and stained for 30 minutes at room temperature with antibody combinations in eight-color cocktails.

Multiparameter flow cytometry was performed using CD19, CD20, CD22, CD11c, CD25, CD103, CD123, surface light chains, CD5, and CD23. In parallel, bone marrow IHC was done using PAX5/CD103 and PAX5/tartrate-resistant alkaline phosphatase (TRAP) dual IHC stains Specimens were acquired on FACSCanto II (BD Biosciences, San Jose, CA, USA). The bone marrow biopsies were fixed in B-Plus fixative and decalcified in Rapid Cal Immuno (BBC Biochemical, Vernon, WA, USA) and paraffin embedded using Tissue Tek processor (Sakura Finetek, Torrance, CA, USA).

The scientists reported that the overall sensitivity of dual IHC stains was 81.4%, positive predictive value was 100%, and negative predictive value was 81.7%. All IHC-positive cases concurred with flow cytometry data, even when HCL burden was extremely low in the flow cytometry specimens (as low as 0.02% of all lymphoid cells). PAX5/CD103 dual IHC staining generated brown nuclear staining for PAX5 and red membranous and cytoplasmic staining for CD103. PAX5/TRAP dual IHC staining showed similar results for PAX5 and red membranous and cytoplasmic staining for TRAP.

The authors concluded that dual IHC staining is a sensitive tool for detecting HCL, even in cases with minimal disease involvement. All IHC-positive cases concurred with FC data, even when HCL burden was extremely low. Only 18.3% of dual IHC–negative cases were positive for low-level involvement by FC analysis. PAX5/CD103 dual IHC staining was slightly more sensitive than PAX5/TRAP dual IHC staining. The study was published in the March 2020 issue of the American Journal of Clinical Pathology.

Related Links:
US National Institute of Cancer
BD Biosciences
BBC Biochemical
Sakura Finetek



Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.