We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Acute Myeloid Leukemia Risk Predicted in Healthy Individuals

By LabMedica International staff writers
Posted on 25 Jul 2018
The incidence of acute myeloid leukemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. More...
Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure.

The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukemic hematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal hematopoiesis (ARCH).

An international team of scientists led by those at the Princess Margaret Cancer Centre (Toronto, ON, Canada) analyzed peripheral blood samples from 95 pre-AML cases and 414 age- and gender-matched controls. The pre-AML samples were obtained an average 6.3 years before diagnosis. The team validated their findings in an additional cohort of 29 cases and 262 controls. The team used use deep sequencing to analyze genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH.

The scientists reported that pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival. In the combined discovery and validation cohorts, 73.4% percent of the pre-AML cases had ARCH, while 36.7% of the controls did. In both groups, DNMTA3A and TET2 were commonly mutated. The group noted that they did not observe any canonical NPM2 mutations or FLT3-internal tandem duplication mutations, which they said was consistent with these mutations cropping up late in disease development.

The investigators also found that mutations in some genes conferred a greater risk of developing AML than others. For instance, mutations in DNMTA3A and TET2 confer a low risk of AML progression, while mutations in TP53 and U2F1 gave a much higher risk of disease progression. The scientist also developed a predictive test for AML into which they then folded additional data from patients' electronic health records. This test could predict AML six to 12 months before diagnosis with a sensitivity of 25.7% and a specificity of 98.2%.

George S. Vassiliou, FRCPath, MRCP, PhD, a cancer research senior fellow and a senior co-author of the study, said, “We hope to build on these findings to develop robust screening tests for identifying those at risk and drive research into how to prevent or stall progression towards AML.” The study was published on July 9, 2018, in the journal Nature.

Related Links:
Princess Margaret Cancer Centre


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.