We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




New Blood Draw Device Evaluated For Hemolysis

By LabMedica International staff writers
Posted on 06 Feb 2018
Hemolysis, defined as the breakdown of red blood cells and the release of hemoglobin and intracellular contents into the plasma, is a frequent occurrence in blood samples submitted to clinical laboratories for testing.
 
Blood collections from peripheral intravenous catheters offer several benefits to patients, including reduced needle punctures and patient discomfort, but they risk reducing the quality of blood specimens analyzed by the laboratory. More...
The estimated prevalence of hemolyzed specimens is approximately 3% of routine samples and they make up approximately 60% of specimens classified as unsuitable for analysis.
 
A team of medical laboratory scientists led by those at University Hospitals Cleveland Medical Center (Cleveland, OH, USA), in an effort to balance analytical quality of test results with patient-centered care initiatives, a needle-less blood collection device called PIVO (Velano Vascular, San Francisco, CA, USA) was evaluated at two institutions. The primary objective of this study was to assess the ability of the PIVO device to provide high-quality blood specimens for laboratory testing compared to current blood collection methods.
 
The PIVO blood collection device was used for blood draws from a peripheral intravenous (IV) catheter (PIVC). Prior to the PIVO collection, the IV catheter was flushed with 5 mL normal saline. The PIVO device was attached to the needle-less valve and actuated through the IV catheter into the blood stream. Standard vacuum tubes or a syringe were used at the back end of the device to collect blood samples. The blood collections were typically performed with a tourniquet above the PIVC. A discard volume of 1 mL was collected through PIVO prior to the required specimen collection. After the PIVO collection the device was retracted, removed, and disposed of. The IV catheter was again flushed with 5 mL normal saline.
 
Specimen integrity was checked by the semi-quantitative, spectrophotometric assessment of hemolysis in human serum and plasma on automated chemistry analyzers. Hemolysis flags were appended to test results when the hemolysis index corresponding to a free hemoglobin concentration of ≥ 50 mg/dL was triggered for blood chemistry test samples requiring an automated specimen integrity check. Approximately 7,600 PIVO blood draws were performed across the two institutions. The hemolysis rates of samples collected with PIVO were evaluated using 2,380 flagged collections, containing approximately 1,200 test orders requiring hemolysis index measurements. The hemolysis rate of PIVO-flagged samples (1.8%) was statistically superior to the venipuncture and central line blood collection methods (3.3%), reducing the risk of hemolysis during a venous blood draw by 39%.
 
The authors concluded that PIVO collections facilitated improvement in the rate and degree of sample hemolysis when compared to venipuncture and central line blood collections. These findings suggest that PIVO is capable of delivering samples that are superior to current blood collection methods in terms of hemolysis rate as well as reducing the number of invasive venipunctures required for laboratory testing. The study was published on January 4, 2018, in the journal Practical Laboratory Medicine.
 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ESR Analyzer
miniiSED™
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.