We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Multiple Myeloma Survival Associated with Enzyme Levels

By LabMedica International staff writers
Posted on 21 Dec 2017
Multiple myeloma (MM) is the second most common blood cancer in the USA and 30% to 50% of multiple myeloma patients have extra copies of the gene that encodes the enzyme Adenosine Deaminase, RNA Specific (ADAR1).

ADAR1 is normally expressed during fetal development to help blood cells form. More...
ADAR1 edits the sequence of RNA, a type of genetic material related to DNA. By swapping out just one RNA building block for another, ADAR1 alters the carefully orchestrated system cells use to control which genes are turned on or off at which times.

Scientists at the University of California San Diego School of Medicine (La Jolla, CA, USA) obtained bone marrow samples from MM patient and normal age-matched controls. Peripheral blood (PB) or bone marrow (BM) samples were processed by Ficoll density centrifugation and viable total mononuclear cells (MNC) were collected for further analyses and stored in liquid nitrogen. RNA editing site-specific quantitative real time polymerase chain reaction (RESSq-PCR) assay primer design was carried out for specific cancer and stem cell-associated loci. The team performed several other molecular procedures to confirm their results.

The scientists analyzed a database of nearly 800 multiple myeloma patient samples, and they discovered that 162 patients with low ADAR1 levels in their tumor cells survived significantly longer over a three-year period compared to 159 patients with high ADAR1 levels. While more than 90% of patients with low ADAR1 levels survived longer than two years after their initial diagnosis, fewer than 70% of patients with high ADAR1 levels were alive after the same period of time.

The team found that two events converge to activate ADAR1 in multiple myeloma, a genetic abnormality and inflammatory cues from the surrounding bone marrow tissue. Together, these signals activate ADAR1, which edits specific RNA in a way that stabilizes a gene that can make cancer stem cells more aggressive. They also found that silencing the ADAR1 gene in the xenograft model reduced multiple myeloma regeneration. Five to 10-fold fewer tumor cells were able to self-renew in mice lacking ADAR1, suggesting a new therapeutic target.

Catriona H. M. Jamieson, MD, PhD, professor of medicine and senior author of the study, said, “Several major advances in recent years have been good news for multiple myeloma patients, but those new drugs only target terminally differentiated cancer cells and thus can only reduce the bulk of the tumor. They don't get to the root cause of disease development, progression and relapse, cancer stem cells, the way inhibiting ADAR1 does. I like to call our approach 'precision regenerative medicine.” The study was published on December 4, 2017, in the journal Nature Communications.

Related Links:
University of California San Diego School of Medicine


Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Nasopharyngeal Applicator
CalgiSwab 5.5" Sterile Mini-tip Calcium Alginate Nasopharyngeal Swab w/Aluminum HDLE
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.