We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




POC Assay Developed for Reliable Blood Grouping

By LabMedica International staff writers
Posted on 07 Apr 2017
Rapid and accurate blood grouping plays a critical role in multiple scientific disciplines, particularly in the biological and medical sciences and especially for pregnancy, blood transfusion, and bone marrow transplantation.

A fast, accurate, and versatile paper-based blood test has been developed that could be performed without the need for specialized equipment providing a more cost-effective strategy for blood grouping. More...
The blood typing assay is based on the color change that occurs when a common pH indicator dye reacts with blood.

Medical scientists at the Third Military Medical University, Chongqing, China, assayed 3,550 venous and finger prick blood samples on a paper-based test using bromocresol green. Blood groups were primarily identified by a diagnostic laboratory using the BioVue gel-card assay. The paper-based assay used immobilized antibodies and bromocresol green dye for rapid and reliable blood grouping, where dye-assisted color changes corresponding to distinct blood components provide a visual readout.

ABO antigens and five major Rhesus antigens could be detected within 30 seconds and simultaneous forward and reverse ABO blood grouping using small volumes (100 μL) of whole blood was achieved within two minutes through on-chip plasma separation without centrifugation. A machine-learning method was developed to classify the spectral plots corresponding to dye-based color changes, which enabled reproducible automatic grouping. Using optimized operating parameters, the dye-assisted paper assay exhibited comparable accuracy and reproducibility to the classical gel-card assays in grouping 3,550 human blood samples. When translated to the assembly line and low-cost manufacturing, the proposed approach may be developed into a cost-effective and robust universal blood-grouping platform.

The authors concluded that the assay not only provides a new strategy for blood grouping but can also be used in time- and resource-limited situations, such as war zones, in remote areas, and during emergencies. Characterized by an intensified and streamlined workflow capability, the proposed blood-grouping assay may be further developed into highly compact and fully automatic platforms that are highly efficient and economical, making large-scale manufacturing possible. The study was published on March 15, 2017, in the journal Science Translational Medicine.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
DNA Extraction Kit
MagMAX DNA Multi-Sample Ultra 2.0 Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.