We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cryopreservation Improves Longer-Lasting Blood Supply

By LabMedica International staff writers
Posted on 01 Dec 2016
The development of highly efficient methods to cryopreserve cells, tissues, and organs is becoming exceedingly important to meet the increasing demands of emerging cellular therapies. More...
Cryopreservation of blood and stem cells has had tremendous impact on regenerative and transfusion medicine.

Currently, red blood cell (RBC) storage is limited to 42 days at 4 °C, which can result in blood shortages when high numbers of emergency transfusions are required. Although cryopreservation can extend the storage time to 10 years, major limitations to current protocols largely limit this preservation method to rare blood types and autologous RBCs.

Biochemists working with the Canadian Blood Services (Edmonton, AB, Canada) have examined a new class of small molecules with the potential to make the cryopreservation process more practical and give the cells and tissues a longer shelf life. Low-molecular-weight ice recrystallization inhibitors (IRIs) are ideal cryoprotectants that control the growth of ice and mitigate cell damage during freezing.

The team performed a detailed study correlating the ice recrystallization inhibition activity and the cryopreservation ability with the structure of O-aryl-glycosides. Many effective IRIs are efficient cryoadditives for the freezing of red blood cells (RBCs). One effective cryoadditive did not inhibit ice recrystallization but instead inhibited ice nucleation, demonstrating the significance of inhibiting both processes and illustrating the importance of this emerging class of cryoprotectants.

The team showed that two of the molecules in the class were effective at preventing ice from forming in red blood cells frozen at -80 °C. Adding the new protectants reduced the needed concentration of glycerol from 40% to between 10% and 15%. Lowering the amount of glycerol could help minimize the time required to prepare thawed red blood cells for transfusion, and thus, be ready for use in patients faster.

The authors concluded that the O-aryl-glycosides represent a novel class of small-molecule IRIs, many of which were effective cryoadditives used for the freezing of RBCs with reduced glycerol concentrations. The synthesis of these structurally simple molecules is amenable to large-scale preparation for use in cryopreservation applications to improve upon cryopreservation protocols of therapeutically important cells. The study was published on October 24, 2016, in the journal ACS Omega.

Related Links:
Canadian Blood Services


Platinum Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
High-Density Lipoprotein Containing Cholesterol Assay
HDL-c direct FS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.