We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Microfluidic Device Automatically Monitors Whole Blood Hemostasis

By LabMedica International staff writers
Posted on 20 Jan 2016
An assay has been devised for testing blood's clotting tendency, also known as hemostasis, which could one day prove lifesaving in a variety of clinical situations in which a patient's health is jeopardized by abnormal blood coagulation and platelet function.

The microfluidic based device assay can be used with blood samples or potentially be integrated into patients' blood flow lines; so that one day clinicians could have the foresight they need to prevent life-threatening events such as blood clotting or internal hemorrhaging.

Scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University (Boston, MA, USA) devised a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. More...
By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples.

The devices were designed to fit on a standard (75 × 50 mm) microscope slide to simplify microscopic analysis using appropriate software and they used SU8 2075 master templates (MicroChem Corporation; Newton, MA, USA) fabricated on Si (100) wafers using photolithography. The devices were fabricated using soft lithography of polydimethylsiloxane (PDMS). The device contains hollow channels that mimic the pathology of the narrowing of small blood vessels, which occurs in patients as a side effect of medical conditions or treatments and can often cause a shift in the fluid mechanics of blood flow that can lead to life-threatening blood clots or internal bleeds.

In a large animal study already conducted, the team perfused blood directly from a living vessel into a microfluidic device to measure clinical clotting parameters over time, and they recorded precise predictions for clotting times for blood samples that were far more accurate and faster than currently-used clinical assays. The real-time monitoring ability of the device could also assess patients' coagulation status almost continuously, in stark contrast to today's standard of once or twice a day testing procedures, thereby reducing the likelihood of toxic side effects resulting from anticoagulation therapies. The team also demonstrated that the device can detect abnormal platelet function in patients with a rare bleeding disorder that cannot be easily identified using conventional assays.

Abhishek Jain, PhD, a postdoctoral fellow and lead author of the study, said, “The physics of what's happening inside our bodies is a major contributor to the reasons why blood clots form or why clotting fails during surgeries, traumas, or extracorporeal medical procedures. By mimicking the physics of blood clotting in our device more precisely, we hope this technology can one day be used to save lives.” The study was published on January 6, 2016, in the journal Nature Communications.

Related Links:

Wyss Institute for Biologically Inspired Engineering 
MicroChem Corporation 



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Automated Staining Unit
RAL Stainer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.