We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cryopreservation Significantly Extends Shelf Life of Blood

By LabMedica International staff writers
Posted on 02 Dec 2014
A method to rapidly prepare frozen red blood cells for transfusions has been reported, which may offer an important new way to manage the world's blood supply.

While it is possible to cryopreserve human red blood cells in the presence of 40% glycerol, this is rarely done because of the time-consuming process to thaw and remove the glycerol from the blood and this can take an hour or more and makes it logistically difficult to use frozen blood. More...


Bioengineers at the Oregon State University (Corvallis, OR, USA) fabricated an appliance for the deglycerolization of red blood cells (RBC) using a microfluidic device consisting of two microchannels separated by a dialysis membrane. They used a mathematical model describing mass transfer within the device and show that the predictions are consistent with experimental measurements of solution composition and hemolysis at the device outlet.

The device consisted of a two laser-patterned Kapton sheets (DuPont, Wilmington, DE, USA), an AN69 hemodialysis membrane, and a clear acrylic housing. The device was sealed by tightening screws around the perimeter of the housing using a torque wrench to ensure even pressure distribution around the plates. Syringes filled with the desired solutions were connected to the device and 20-gauge blunt dispensing needles. The syringes were then loaded onto syringe pumps (New Era Pump Systems; Farmingdale, NY, USA) to introduce fluids into the device.

The scientists found that frozen-thawed RBCs can be flowed through a microfluidic membrane device without causing excessive mechanical damage; predictions of solution composition and cell volume are in reasonable agreement with investigational data. This opens opportunities for model-guided design of microfluidic deglycerolization processes. Using a four-stage microfluidic process, it is theoretically possible to remove glycerol in less than three minutes, more than an order of magnitude faster than current deglycerolization methods.

Adam Z. Higgins, PhD, an associate professor and coauthor of the study said, “Only a small fraction of our blood supply is now frozen, because it's often impractical to wait so long when a transfusion is needed immediately. Because of that, our entire system depends on constantly balancing the use and supply of blood products that can only last six weeks or less with refrigeration. This is difficult, and can lead to loss of outdated blood, periodic shortages, and other inefficiencies that could be solved with the use of frozen blood.” The study was published on October 28, 2014, in the journal Biomicrofluidics.

Related Links:

Oregon State University
DuPont  
New Era Pump Systems



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.