Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

SYSMEX-EUROPA

Sysmex Europe designs and produces laboratory and hematology diagnostic solutions, including instruments, reagents, c... read more Featured Products: More products

Download Mobile App




Routine Light Transmission Platelet Aggregation Automated

By LabMedica International staff writers
Posted on 05 Aug 2014
Platelet aggregation is most commonly measured by light transmission aggregometry (LTA), in which the increase in light transmission through a stirred suspension of platelet-rich plasma (PRP) is monitored as platelets aggregate.

The assessment of platelet aggregation to a range of agonists including adenosine diphosphate (ADP), epinephrine, collagen, arachidonic acid and ristocetin is central to the investigation of platelet function disorders, but is only undertaken by a few specialized hemostasis laboratories.

Hematologists at the University College London (UK) working with colleagues from Japan and France, obtained blood samples from 14 normal healthy subjects not receiving any medication or who were self-medicating with nonsteroidal anti-inflammatory drugs, and from 2 individuals who were taking clopidogrel, an antiplatelet agent used to inhibit blood clots. More...
Platelet aggregation was performed by examining the effect of varying reaction cuvette stirrer speed and the platelet count in PRP using the following agonists: ADP, epinephrine, collagen, ristocetin and arachidonic acid. Platelet aggregation reactions were measured on an AggRAM aggregometer (Helena Biosciences Europe; Gateshead, UK) which was used as the reference instrument.

The investigators duplicated the platelet aggregation study using the CS-2000i analyzer (Sysmex Corporation; Kobe, Japan) with the same agonists. The CS-2000i is an open analytical system, which means that test protocols and reagents can be user-defined. For this study, test protocols varying only in the reagent/concentration used were defined for commonly used platelet agonists. These protocols facilitated the generation of measured raw light transmission data under highly controlled conditions including sample volume, incubation period, reagent volume, reaction mixture stirrer speed and period of time for which the reaction was to be monitored.

CS-2000i reaction cuvette stirrer speed was found to influence reaction sensitivity and was optimized to 800 revolutions per minute (rpm). There were no clinically significant changes in aggregation response when the PRP platelet count was 150 to 480 × 109/L, but below this there were changes in the maximum amplitude (MA) and slope (rate). Dose response with each of the agonists was comparable between CS-2000i and an AggRAM aggregometer and normal subjects receiving antiplatelet drugs. Aggregation imprecision was similar on both the CS-2000i and AggRAM systems, with a coefficient of variation for 2 μm to 5 μm ADP MA and slope varying between 3% to 12%.

The authors concluded that their data demonstrated that CS-2000i is comparable to a stand-alone aggregometer, although CS-2000i has the advantages of walk-away technology and also required a 44% smaller sample volume than the AggRAM. The study was published July 13, 2014, in the International Journal of Laboratory Hematology.

Related Links:

University College London 
Helena Biosciences Europe 
Sysmex Corporation



Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Rheumatoid Factors (RF) Test
Rheumatoid Factors (RF)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.