We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Portable Device Counts Leukocytes

By LabMedica International staff writers
Posted on 15 Apr 2013
A point-of-care test for the leukocyte count has been developed that uses a microflow cytometer and a fluorescent dye assay.

By combining the fluorescent assay with a sheathless microflow design, the novel method achieved a minimal sample volume by eliminating excessive dilution and sheath flow. More...


Medical engineers at the California Institute of Technology (Pasadena, CA, USA) collaborating with LeukoDx (Jerusalem, Israel) have developed a portable white blood cell counter that could improve outpatient monitoring of patients with chronic conditions such as leukemia or other cancers.

The prototype device is able to count all five subtypes of white blood cells within a sample. It provides an accurate differential of the four major subtypes, lymphocytes, monocytes, eosinophils, and neutrophils. In addition, it could be used to flag an abnormally high level of the fifth subtype, basophils, which are normally too rare representing less than 1% of all white blood cells, for accurate detection in clinical tests. The whole test uses only 5 μL of blood and 68 μL of reagents in total.

The detection assay uses three dyes to stain white blood cells so that they emit light or fluoresce, brightly in response to laser light. Blood samples are treated with this dye assay before measurement in the new device. The first dye binds strongly to the DNA found in the nucleus of white blood cells, making it simple to distinguish between white blood cells and the red blood cells that surround and outnumber them. The other two dyes help differentiate between the subtypes. The entire new system fits in a small briefcase measuring 30.5 cm × 23 cm × 12.7 cm, and could easily be made into a handheld device.

The stained blood sample flows through this microfluidic channel to the detection region, where it is illuminated with a laser, causing it to fluoresce. The resulting emission of the sample is then split by a mirror into two beams, representing the green and red fluorescence. Due to the dye assay, the white blood cell subtypes emit characteristic amounts of red and green light. Therefore, by determining the intensity of the emissions for each detected cell, the device can generate highly accurate differential white blood cell counts.

Yu-Chong Tai, PhD, the project's principal investigator, said, “The white blood cell counts from our new system closely match the results from tests conducted in hospitals and other central clinical settings. This could make point-of-care testing possible for the first time." The study was published on January 18, 2013, in the journal Lab on a Chip.

Related Links:
California Institute of Technology
LeukoDx




Platinum Member
Xylazine Immunoassay Test
Xylazine ELISA
Verification Panels for Assay Development & QC
Seroconversion Panels
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
D-Dimer Test
Epithod 616 D-Dimer Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.