We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Sequencing Systems Resolve Blood Cancer Mutations

By LabMedica International staff writers
Posted on 17 Dec 2012
A study of more than 4,000 cancer cases demonstrated the potential of next generation sequencing systems to comprehensively characterize an individual’s blood cancer type to guide personalized therapy decisions.

A consortium of 26 laboratories from 13 countries in Europe and Asia performed comprehensive analysis of 74 genes in individuals with acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphatic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPN). More...
The international consortium is being led by scientists from the Munich Leukemia Laboratory (MLL; Germany).

Based on Roche's (Basel, Switzerland) 454 Sequencing Systems, the study demonstrated that the advanced technology supported the comprehensive molecular characterization of hematological malignancies with high sensitivity and specificity. The study was presented at American Society of Hematology Meeting in Atlanta (GA, USA), December 2012.

The current study is an extension of a previous IRON study, which demonstrated the robustness, precision, and reproducibility of next generation sequencing with 454 Sequencing Systems for characterization of key genes associated with leukemia. It broadens the set of genes from 3 to 74 with a new expanded set of investigative primer plates.

“We are pleased with the results of the international study, which continues to evaluate the unique value of 454 Sequencing Systems in blood cancer research,” said Thomas Schinecker, president of 454 Life Sciences, a Roche Company. “We are strongly supporting the community with the development of standardized gene panels for molecular characterization of hematological malignancies, which is an important step towards future routine clinical use.”

Related Links:

Munich Leukemia Laboratory
Roche



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Verification Panels for Assay Development & QC
Seroconversion Panels
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Turbidimetric Control
D-Dimer Turbidimetric Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.